
1

1

CSC 551: Web Programming

Spring 2004

Java Overview
Design goals & features

platform independence, portable, secure, simple, object-oriented, …

Programming models
applications vs. applets vs. servlets
intro to applets
− libraries, comments, classes, inheritance
− applet tag in HTML
− applet parameters

2

Java was developed at Sun Microsystems, 1995
originally designed for small, embedded systems in electronic appliances
initial attempts used C++, but frustration at limitations/pitfalls

recall: C++ = C + OOP features
the desire for backward compatibility led to the retention of many bad features

Java

desired features (from the Java white paper):
simple object-oriented robust
platform independent architecture neutral portable
dynamic interpreted high-performance
distributed multi-threaded secure

note: these are desirable features for any modern language
thus, Java has become very popular, especially when Internet related
also, Sun distributes free compilers (JDK) and open source

2

3

Language features

simple
syntax is based on C++ (familiarity easier transition for programmers)
removed many confusing and/or rarely-used features
e.g., explicit pointers, operator overloading, automatic coercions

added memory management (reference count/garbage collection hybrid)

object-oriented
OOP facilities similar C++, all methods are dynamically bound
pure OOP – everything is a class, no independent functions*

robust
lack of pointers and memory management avoids many headaches/errors
libraries of useful, tested classes increases level of abstraction

arrays & strings are ADTs, well-defined interfaces

4

Language features (cont.)
platform independence

want to be able to run Java code on multiple platforms
neutrality is achieved by mixing compilation & interpretation
1. Java programs are translated into byte code by a Java compiler

byte code is a generic machine code
2. byte code is then executed by an interpreter (Java Virtual Machine)

must have a byte code interpreter for each hardware platform

an Applet is a special form of Java application
byte code is downloaded with page, JVM is embedded in browser

portable
byte code will run on any version of the Java Virtual Machine (JVM)

architecture-neutral
no implementation dependent features (e.g., size of primitive types is set)

high-performance
faster than traditional interpretation since byte code is "close" to native code
still somewhat slower than a compiled language (e.g., C++)

3

5

Language features (cont.)

secure
Java applications do not have direct access to memory locations

memory accesses are virtual, mapped by JVM to physical locations
downloaded applets cannot open, read, or write local files

JVM also verifies authenticity of classes as they are loaded
Sun claim: execution model enables virus-free*, tamper-free* systems

distributed
extensive libraries for coping with TCP/IP protocols like HTTP & FTP
Java applications can access remote URL's the same as local files

multi-threaded
a thread is like a separate program, executing concurrently
can write Java programs that deal with many tasks at once by defining multiple
threads (same shared memory, but semi-independent execution)
threads are important for multi-media, Web applications

6

Java programming models

Java applications are stand-alone programs
must be compiled into Java byte code by Java compiler, then distributed
executed by an interpreter (Java Virtual Machine)

Java applets provide for client-side programming
compiled into Java byte code, then downloaded as part of a Web page
executed by the JVM embedded within the Web browser

unlike JavaScript, Java is full-featured with extensive library support
Java and its APIs have become industry standards

the language definition is controlled by Sun, ensures compatibility
Applications Programming Interfaces standardize the behavior of useful classes
and libraries of routines

Java servlets provide similar capabilities on the server-side
alternative to CGI programs, more fully integrated into Web server

4

7

important point: Java applets & applications look different!
if you want to define a stand-alone application, make an application

requires public static void main function, similar to C++ main
if you want to embed the code in a Web page, make an applet

requires public void paint, public void init, …
can define dual-purpose programs, but tricky

Java applets

as with JavaScript, security is central
when a Java applet is downloaded, the bytecode verifier of the JVM verifies to see if
it contains bytecodes that open, read, write to local disk
a Java applet can open a new window but they have Java logo to prevent them from
being disguised as system window (e.g., to steal passwords)
a Java applet is not allowed to connect back to other servers except the host

this secure execution environment is called sand box model

8

First Java applet
import java.awt.*;
import java.applet.*;

/**
* This class displays "Hello world!" on the applet window.
*/

public class HelloWorld extends Applet
{
public void paint(Graphics g)
{

g.drawString("Hello world!", 10, 10); // writes starting 10 pixels over & down
}

}

libraries: Java provides extensive library support in the form of classes
libraries are loaded using import (similar to #include in C++)
java.awt: contains Abstract Window Toolkit (for GUI classes & routines)
java.applet: contains the applet class definition

comments: // and /* */ work the same as in C++
also have /** */ which denote documentation comments (can be used to generate docs)

5

9

First Java applet
import java.awt.*;
import java.applet.*;

/**
* This class displays "Hello world!" on the applet window.
*/

public class HelloWorld extends Applet
{
public void paint(Graphics g)
{

g.drawString("Hello world!", 10, 10); // writes starting 10 pixels over & down
}

}

class definitions in Java
similar to C++ (but no semi-colon at end)
can contain instance variables (data fields) & methods(member functions)
precede class & method definitions with public to make available to all programs

there are no stand-alone functions in Java*
must be stored in a file of same name with .java extension
e.g., HelloWorld.java

10

First Java applet
import java.awt.*;
import java.applet.*;

/**
* This class displays "Hello world!" on the applet window.
*/

public class HelloWorld extends Applet
{
public void paint(Graphics g)
{

g.drawString("Hello world!", 10, 10); // writes starting 10 pixels over & down
}

}

all applets inherit from the Applet class (in java.applet)
default methods include:

init(): called when page is loaded to create/initialize variables
by default, does nothing

paint(Graphics g): called to draw (after init) or redraw (after being obscured)
here, the paint method is overridden to display text on the applet window

6

11

Embedding an applet in HTML

<html>
<!-- Dave Reed hello1.html 3/20/04 -->

<head>
<title>Hello World Page</title>

</head>

<body>

<p>
<applet code="HelloWorld.class" height=100 width=100>

You must use a Java-enabled browser to view this applet.
</applet>

</p>

</body>
</html>

to include an applet in a Web page, use either
APPLET tag (deprecated)

CODE specifies applet name, HEIGHT and WIDTH specify window size
text between the APPLET tags is displayed if unable to execute (e.g., Java not enabled)

OBJECT tag
preferred for HTML 4, but not universally supported

view page in
browser

12

HTML & applets
<html>
<!-- Dave Reed hello2.html 3/20/04 -->

<head>
<title>Hello World Page</title>

</head>

<body>

<p>
<div align="center">
<table border=1>
<tr><td>

<applet code="HelloWorld.class" height=200 width=200>
You must use a Java-enabled browser to view this applet.

</applet>

</td></tr>
</table>
</div>
</p>

</body>
</html>

view page in browser

an applet can be
embedded within HTML
elements just like any
other element

useful for formatting and
layout

7

13

Parameters in HTML
<html>
<!-- Dave Reed hello3.html 3/20/04 -->

<head>
<title>Hello World Page</title>
</head>

<body>

<p>
<div align="center">
<table border=1>
<tr><td>

<applet code="HelloWorld1.class" height=35 width=300>
<param name="name" value="Chris">
<param name="age" value=20>
You must use a Java-enabled browser to view this applet.

</applet>

</td></tr>
</table>
</div>
</p>

</body>
</html>

view page in browser

can specify parameters
to the APPLET when it
is embedded in HTML

• each parameter must
have its own PARAM tag
inside the APPLET
element

• specifies parameter
name and value

14

Applet parameters
import java.awt.*;
import java.applet.*;

/**
* This class displays a message based on parameters.
*/

public class HelloWorld1 extends Applet
{

public void paint(Graphics g)
{

String userName = getParameter("name");
int userAge = Integer.parseInt(getParameter("age"));

String message1 = "Hello " + userName + ".";
String message2 = "On your next birthday, you will be " +

(userAge+1) + " years old.";

g.drawString(message1, 10, 10);
g.drawString(message2, 10, 30);

}
}

can access parameters passed in from the HTML document
getParameter accesses the value of the parameter (must know its name)

if the parameter represents a number, must parseInt or parseFloat

