CSC 546: Client/Server Fundamentals

Fall 2000

See online syllabus at:

www.creighton.edu/~davereed/csc546

Course goals:

- introduce client/server concepts
- basic understanding of issues involved in design, implementation, and evaluation of client/server systems
- working knowledge of existing applications and implementation techniques

What is client/server?

client/server describes a logical relationship between processes

- an entity (client) requests a service
- another entity (server) provides that service

client: professor with bad spelling skills

server: student with dictionary

classic example: relational database management system

- server maintains and searches database (Oracle, Ingres, Informix, Sybase)
- database front-ends receive and process queries from users, request data from server, format and display reports

Pervasive examples

print server

- server maintains print queue, file processing
- client applications request a print job, transmit file

World Wide Web

- server maintains Web pages, links to other servers
- browsers present links to users, request pages from server, display pages

e-mail

- server stores messages and routing/timing information
- apps allows users to compose message, requests transmission from server apps requests access to incoming messages, displays to user

Client/server involves processes, not machines

• the same machine can run multiple processes, both server & client

client: student asks for knowledge, guidance server: professor lectures, answers questions

same machine might run Web server, mail server, printer server, ...

server/client relationship can be internal to a machine

client/server: professor looks up his own spellings

can run browser, access mail, print from server machine

Distributed processing

client/server is an example of a distributed processing architecture

Basic terminology:

- multiprogramming: multiple programs/processes in memory but only 1 executes at a time (e.g., DOS)
- multitasking: can execute multiple processes pseudo-concurrently
 preemptive: OS can interrupt process (e.g., OS/2, UNIX)
 cooperative: process can only be interrupted if designed (Mac, Windows)
- multiprocessing: multiple CPU's execute processes concurrently
 tightly coupled: single OS controls CPU sharing (Compaq Systempro)
 loosely coupled: multiple OS's, must coordinate execution (LAN/WAN)
- Interprocess Communication (IPC): message passing facilities provided by OS to allow concurrent processes to communicate/coordinate

Distributed architectures

among networks, the computation/logical load can vary

mainframe architecture:

- all intelligence resides within central host computer
- can be accessed via dumb terminals (transmit & display keystrokes)

file-sharing architecture (LAN):

- central host computer contains files & applications
- files/applications are downloaded over network, executed locally

client/server architecture:

- more even distribution of work, less data transmission
- can introduce multiple tiers of servers, hierarchical network

Client/server attributes

client:

- proactive
- intermittent
- maintains and processes the user dialog
 e.g., screen handling, menu/command interpretation, data validation,
 help processing, error recovery, GUI controls
- fat vs. thin

server:

- reactive
- continuous
- provides functional service
- processes multiple requests concurrently
- e.g., shared resource servers: backup server, print server, mail server display server: X windows access server: firewall

client/server communications are: transactional, cooperative, many-to-few

Advantages of client/server

flexibility

- mainframes provide only one interface (usually textual)
- with client/server, can create different interfaces for different modes e.g., marketing interface, inventory interface, ...
- each client can select/customize interface
 e.g., PC GUI already familiar/intuitive to many users

reduced network traffic

- file-sharing systems require transmitting entire files/databases
- with client/server, files/databases reside on server only response to client's request needs to be transmitted
- interface details, query verification, response formatting handled by client

Advantages (from a business perspective)

reduced system development and maintenance time

- mainframes are expensive, software is nonstandard
- packaged client/server applications are usually cheaper and simpler
- centralized updates are easier and less disruptive

Motorola

old system: maintained in-house database system on mainframes \$30K per month on coding & software updates new system: UNIX clients running X windows, off-the-shelf applications computing costs reduced from 3.2% of annual revenue to < 1% (\$150M over 2 yrs)

Panalpina World Transport (U.K.)

old system: 200 offices with local PC software, upload data to mainframe IT support had to travel to remote sites for upgrades & repairs new system: single server, clients in each office no data duplication, reduced support staff (450 → centralized staff of 3)

Hyatt Corporation

client/server reservation system: update times reduced from 6 months to 2-3 weeks operating costs reduced by 30%, staff reduced from 23 to 6

More advantages (from a business perspective)

data is readily accessible to decision makers

- information is centralized, always up-to-date
- fast, accurate information can increase organizational responsiveness

Lutheran Hospitals (Chicago)

patient data is stored in a database on a central server can be updated by doctor/nurse/administrator, immediately accessible

Lexmark International (KY)

client/server system links production, marketing, finance, and HR manufacturing cycle reduced from 4 hours to 24 minutes inventory turns over 59% faster, volume per shift increased 33%

National Gallery of Art (D.C.)

client/server system maintains > 600 pieces of info on each object in collection each department has access to relevant information about objects movement subsystem helps plan, monitor & coordinate shipments acquisitions subsystem helps integrate new objects, plan & arrange shows

Disadvantages of client/server

resistance to change

new technology requires new expertise, change in operations

high training costs

since work is distributed, more workers need expertise

extensive planning required

distributed computation can lead to chaos

inadequate standards

system management, maintenance, and security not standardized

susceptibility to security violations

access to centralized data must be controlled

Next week...

Technology & business perspectives

- business pressures leading to client/server
- technology backdrop
- enterprise computing

Read Chapters 1, 2 and 3

Be prepared for quiz on

- today's lecture (moderately thorough)
- the reading (superficial)