Greed is good?

IMPORTANT: the greedy approach is not applicable to all problems

- but when applicable, it is very effective (no planning or coordination necessary)

GREEDY approach for N-Queens: start with first row, find a valid position in current row, place a queen in that position then move on to the next row

since queen placements are not independent, local choices do not necessarily lead to a global solution

GREEDY does not work – need a more holistic approach
Generate & test?

recall the generate & test solution to N-queens

- systematically generate every possible arrangement
- test each one to see if it is a valid solution

\[\binom{16}{4} = 1,820 \text{ arrangements} \]

fortunately, we can do better if we recognize that choices can constrain future choices

- e.g., any board arrangement with a queen at (1,1) and (2,1) is invalid
- no point in looking at the other queens, so can eliminate 16 boards from consideration

- similarly, queen at (1,1) and (2,2) is invalid, so eliminate another 16 boards

Backtracking

backtracking is a smart way of doing generate & test

- view a solution as a sequence of choices/actions (similar to GREEDY)
- when presented with a choice, pick one (similar to GREEDY)
- however, reserve the right to change your mind and backtrack to a previous choice (unlike GREEDY)

- you must remember alternatives: if a choice does not lead to a solution, back up and try an alternative

- eventually, backtracking will find a solution or exhaust all alternatives

backtracking is essentially depth first search

- add ability to prune a path as soon as we know it can't succeed
- when that happens, back up and try another path
N-Queens pseudocode

```java
/**
 * Fills the board with queens starting at specified row
 * (Queens have already been placed in rows 0 to row-1)
 */
private boolean placeQueens(int row) {
    if (ROW EXTENDS BEYOND BOARD) {
        return true;
    }
    else {
        for (EACH COL IN ROW) {
            if ([ROW][COL] IS NOT IN JEOPARDY FROM EXISTING QUEENS) {
                ADD QUEEN AT [ROW][COL];
                if (this.placeQueens(row+1)) {
                    return true;
                }
                else {
                    REMOVE QUEEN FROM [ROW][COL];
                }
            }
        }
        return false;
    }
}
```

Chessboard class

we could define a class hierarchy for chess pieces

- ChessPiece is an abstract class that specifies the common behaviors of pieces
- Queen, Knight, Pawn, ... are derived from ChessPiece and implement specific behaviors

```
public class ChessBoard {
    private ChessPiece[][] board; // 2-D array of chess pieces
    private int pieceCount; // number of pieces on the board

    public ChessBoard(int size) {...} // constructs size-by-size board
    public ChessPiece get(int row, int col) {...} // returns piece at (row,col)
    public void remove(int row, int col) {...} // removes piece at (row,col)
    public void add(int row, int col, ChessPiece p {...} // places a piece, e.g., a queen, at (row,col)
    public boolean inJeopardy(int row, int col) {...} // returns true if (row,col) is under attack by any piece
    public int numPieces() {...} // returns number of pieces on board
    public int size() {...} // returns the board size
    public String toString() {...} // converts board to String
}
```
Backtracking N-queens

```java
public class NQueens {
    private ChessBoard board;
    . . .
    /**
     * Fills the board with queens.
     */
    public boolean placeQueens() {
        return this.placeQueens(0);
    }
    /*
     * Fills the board with queens starting at specified row
     * (Queens have already been placed in rows 0 to row-1)
     */
    private boolean placeQueens(int row) {
        if (row >= this.board.size()) {
            return true;
        } else {
            for (int col = 0; col < this.board.size(); col++) {
                if (!this.board.inJeopardy(row, col)) {
                    this.board.add(row, col, new Queen());
                    if (this.placeQueens(row+1)) {
                        return true;
                    } else {
                        this.board.remove(row, col);
                    }
                }
            }
            return false;
        }
    }
}
```

Why does backtracking work?

backtracking burns no bridges – all choices are reversible

backtracking provides a systematic way of trying all paths (sequences of choices) until a solution is found
- assuming the search tree is finite, will eventually find a solution or exhaust the entire search space

backtracking is different from generate & test in that choices are made sequentially
- earlier choices constrain later ones
- can avoid searching entire branches
Another example: blob count

application: 2-D gel electrophoresis
- biologists use electrophoresis to produce a gel image of cellular material
- each “blob” (contiguous collection of dark pixels) represents a protein
- identify proteins by matching the blobs up with another known gel image

we would like to identify each blob, its location and size
- location is highest & leftmost pixel in the blob
- size is the number of contiguous pixels in the blob
- in this small image: Blob at [0][1]: size 5
 Blob at [2][7]: size 1
 Blob at [6][0]: size 4
 Blob at [6][6]: size 4
- can use backtracking to locate & measure blobs

Blob count (cont.)

can use recursive backtracking to get a blob’s size
when find a spot:
 1 (for the spot) +
 size of all connected subblobs (adjacent to spot)

note: we must not double count any spots
- when a spot has been counted, must "erase" it
- keep it erased until all blobs have been counted

pseudocode:

private int blobSize(int row, int col) {
 if (OFF THE GRID || NOT A SPOT) {
 return 0;
 } else {
 ERASE SPOT;
 return 1 + this.blobSize(row-1, col-1) +
 this.blobSize(row-1, col) +
 this.blobSize(row-1, col+1) +
 this.blobSize(row, col-1) +
 this.blobSize(row, col+1) +
 this.blobSize(row+1, col-1) +
 this.blobSize(row+1, col) +
 this.blobSize(row+1, col+1);
 }
}
public class Gel {
 private char[][] grid; . . .

 public void findBlobs() {
 for (int row = 0; row < this.grid.length; row++) {
 for (int col = 0; col < this.grid.length; col++) {
 if (this.grid[row][col] == '*') {
 System.out.println("Blob at "+ row + ""," + col + ": size " +
 this.blobSize(row, col));
 };
 }

 for (int row = 0; row < this.grid.length; row++) {
 for (int col = 0; col < this.grid.length; col++) {
 if (this.grid[row][col] == 'O') {
 this.grid[row][col] = '*';
 };
 }
 }

 private int blobSize(int row, int col) {
 if (row < 0 || row >= this.grid.length ||
 col < 0 || col >= this.grid.length ||
 this.grid[row][col] != '*') {
 return 0;
 } else {
 this.grid[row][col] = 'O';
 return 1 + this.blobSize(row-1, col-1) +
 this.blobSize(row-1, col) +
 this.blobSize(row-1, col+1) +
 this.blobSize(row, col-1) +
 this.blobSize(row, col+1) +
 this.blobSize(row+1, col-1) +
 this.blobSize(row+1, col) +
 this.blobSize(row+1, col+1);}
 }
}

findBlobs traverses the image, checks each grid pixel for a blob

blobSize uses backtracking to expand in all directions once a blob is found

each pixel is "erased" after it is processed in blobSize to avoid double-counting (& infinite recursion)
the image is restored at the end of findBlobs

Another example: Boggle

recall the game
- random letters are placed in a 4x4 grid
- want to find words by connecting adjacent letters (cannot reuse the same letter)
- for each word found, the player earns points = length of the word
- the player who earns the most points after 3 minutes wins

how do we automate the search for words?
Boggle (cont.)

can use recursive backtracking to search for a word
when the first letter is found:
 remove first letter & recursively search for remaining letters
again, we must not double count any letters
 • must "erase" a used letter, but then restore for later searches

```java
private boolean findWord(String word, int row, int col) {
    if (WORD IS EMPTY) {
        return true;
    } else if (OFF_THE_GRID || GRID LETTER != FIRST LETTER OF WORD) {
        return false;
    } else {
        ERASE LETTER;
        String rest = word.substring(1, word.length());
        boolean result = this.findWord(rest, row-1, col-1) ||
                         this.findWord(rest, row-1, col) ||
                         this.findWord(rest, row-1, col+1) ||
                         this.findWord(rest, row, col-1) ||
                         this.findWord(rest, row, col+1) ||
                         this.findWord(rest, row+1, col-1) ||
                         this.findWord(rest, row+1, col) ||
                         this.findWord(rest, row+1, col+1);
        RESTORE LETTER;
        return result;
    }
}
```

BoggleBoard class

can define a `BoggleBoard` class that represents a board
 • has public method for finding a word
 • it calls the private method that implements recursive backtracking
 • also needs a constructor for initializing the board with random letters
 • also needs a `toString` method for easily displaying the board

```java
public class BoggleBoard {
    private char[][] board;
    . . .
    public boolean findWord(String word, int row, int col) {
        if (word.equals("")) {
            return true;
        } else if (row < 0 || row >= this.board.length ||
                   col < 0 || col >= this.board.length) {
            return false;
        } else {
            char safe = this.board[row][col];
            String rest = word.substring(1, word.length());
            boolean result = this.findWord(rest, row-1, col-1) ||
                             this.findWord(rest, row-1, col) ||
                             this.findWord(rest, row-1, col+1) ||
                             this.findWord(rest, row, col-1) ||
                             this.findWord(rest, row, col+1) ||
                             this.findWord(rest, row+1, col-1) ||
                             this.findWord(rest, row+1, col) ||
                             this.findWord(rest, row+1, col+1);
            return result;
        }
    }
    . . .
}
```
BoggleGame class

A separate class can implement the game functionality

- **constructor** creates the board and fills `unguessedWords` with all found words
- **makeGuess** checks to see if the word is valid and has not been guessed, updates the sets accordingly
- Also need methods for accessing the `guessedWords`, `unguessedWords`, and the board (for display)

see BoggleGUI

```java
public class BoggleGame {
    private final static String DICT_FILE = "dictionary.txt";
    private BoggleBoard board;
    private Set<String> guessedWords;
    private Set<String> unguessedWords;

    public BoggleGame() {
        this.board = new BoggleBoard();
        this.guessedWords = new TreeSet<String>();
        this.unguessedWords = new TreeSet<String>();
        try {
            Scanner dictFile = new Scanner(new File(DICT_FILE));
            String nextWord = dictFile.next();
            while (dictFile.hasNext()) {
                if (this.board.findWord(nextWord)) {
                    this.unguessedWords.add(nextWord);
                }
            }
        } catch (java.io.FileNotFoundException e) {
            System.out.println("DICTIONARY FILE NOT FOUND");
        }
    }

    public boolean makeGuess(String word) {
        if (this.unguessedWords.contains(word)) {
            this.unguessedWords.remove(word);
            this.guessedWords.add(word);
            return true;
        }
        return false;
    }
}
```

Branch & bound

The central idea of backtracking is cutting off a branch of the search as soon as we see that it can’t lead to a solution

- then, backtrack and try a different branch

E.g., for the shortest path problem

- we cut off a branch if the vertex was a dead end
- we also cut it off if its length exceeded that of an already found path

What if we also had the ability to look ahead?

- i.e., if we could tell ahead of time (using some deduction) that a branch was not going to work, then we could preemptively cut
- This variant of backtracking is known as **branch & bound**
B & B example

suppose you have four jobs and 4 contractors (with bids), and want to assign the jobs to the contractors to minimize cost

<table>
<thead>
<tr>
<th>job 1</th>
<th>job 2</th>
<th>job 3</th>
<th>job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>contractor a</td>
<td>$9K</td>
<td>$2K</td>
<td>$7K</td>
</tr>
<tr>
<td>contractor b</td>
<td>$6K</td>
<td>$4K</td>
<td>$3K</td>
</tr>
<tr>
<td>contractor c</td>
<td>$5K</td>
<td>$8K</td>
<td>$1K</td>
</tr>
<tr>
<td>contractor d</td>
<td>$7K</td>
<td>$6K</td>
<td>$9K</td>
</tr>
</tbody>
</table>

- e.g., a → 1, b → 2, c → 3, d → 4 \[9 + 4 + 1 + 4 = \$18K\] total
- e.g., a → 2, b → 3, c → 1, d → 4 \[2 + 3 + 5 + 4 = \$14K\] total

generate & test?

B & B example (cont.)

note that there is a (possibly unobtainable) lower bound on the bid total
- you can't possibly do better than assigning every contractor their lowest bid
- here, 2 + 3 + 1 + 4 = $10K is a lower bound
- (it is not even achievable, since b & c are assigned the same job)

the lower bound gives us a basis for choosing one branch over another
- i.e., use a greedy approach to select the branch with smallest lower bound
 \[lb = \text{cost of bids assigned so far} + \text{minimal bids possible for remaining contractors}\]
B & B example (cont.)

at each step, choose the vertex/state with smallest lower bound, and extend

- can cut off a branch if its lb exceeds the cost of a found solution

<table>
<thead>
<tr>
<th>contractor a</th>
<th>job 1</th>
<th>job 2</th>
<th>job 3</th>
<th>job 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9K</td>
<td>$9K</td>
<td>$7K</td>
<td>$8K</td>
<td></td>
</tr>
<tr>
<td>contractor b</td>
<td>$6K</td>
<td>$4K</td>
<td>$3K</td>
<td>$7K</td>
</tr>
<tr>
<td>contractor c</td>
<td>$5K</td>
<td>$8K</td>
<td>$1K</td>
<td>$8K</td>
</tr>
<tr>
<td>contractor d</td>
<td>$7K</td>
<td>$6K</td>
<td>$9K</td>
<td>$4K</td>
</tr>
</tbody>
</table>

Algorithmic approaches summary (so far)

brute force: sometimes the straightforward approach suffices

transform & conquer: sometimes the solution to a simpler variant suffices

divide/decrease & conquer: tackles a complex problem by breaking it into smaller piece(s), solving each piece (often w/ recursion), and combining into an overall solution

- applicable for any application that can be divided into smaller or independent parts

greedy: makes a sequence of choices/actions, choose whichever looks best at the moment

- applicable when a solution is a sequence of moves & perfect knowledge is available

backtracking: makes a sequence of choices/actions (similar to greedy), but stores alternatives so that they can be attempted if the current choices lead to failure

- more costly in terms of time and memory than greedy, but general-purpose

- branch & bound variant cuts off search at some level and backtracks
Interesting aside: B & B search in game playing

consider games involving:

- 2 players
- perfect information
- zero-sum (player's gain is opponent's loss)

examples: tic-tac-toe, checkers, chess, othello, …
non-examples: poker, backgammon, prisoner's dilemma, …

von Neumann (the father of game theory) showed that for such games, there is always a "rational" strategy

- that is, can always determine a best move, assuming the opponent is equally rational

```
    O
   /|
  X O
```

what is X's rational move?

Game trees

idea: model the game as a search tree

- associate a value with each game state (possible since zero-sum)
 player 1 wants to maximize the state value (call him/her MAX)
 player 2 wants to minimize the state value (call him/her MIN)
- players alternate turns, so differentiate MAX and MIN levels in the tree

```
player 1's move (MAX)

player 2's move (MIN)

player 1's move (MAX)

the leaves of the tree will be end-of-game states
```
Minimax search

minimax search:
- at a MAX level, take the maximum of all possible moves
- at a MIN level, take the minimum of all possible moves

can visualize the search bottom-up (start at leaves, work up to root)
likewise, can search top-down using recursion

Minimax example
In-class exercise

Minimax in practice

while Minimax Principle holds for all 2-party, perfect info, zero-sum games, an exhaustive search to find best move may be infeasible

EXAMPLE: in an average chess game, ~100 moves with ~35 options/move → ~35^{100} states in the search tree!

practical alternative: limit the search depth and use heuristics

- expand the search tree a limited number of levels (limited look-ahead)
- evaluate the "pseudo-leaves" using a heuristic
 - high value → good for MAX
 - low value → good for MIN
back up the heuristic estimates to determine the best-looking move
 - at MAX level, take minimum
 - at MIN level, take maximum
Tic-tac-toe example

heuristic(State) = \[
\begin{cases}
 1000 & \text{if win for MAX (X)} \\
 -1000 & \text{if win for MIN (O)} \\
 \text{(#rows/cols/diags open for MAX – #rows/cols/diags open for MIN)} & \text{otherwise}
\end{cases}
\]

suppose look-ahead of 2 moves

\(\alpha-\beta\) bounds

sometimes, it isn't necessary to search the entire tree

\(\alpha-\beta\) technique: associate bonds with state in the search

- associate lower bound \(\alpha\) with MAX: can increase
- associate upper bound \(\beta\) with MIN: can decrease
α-β pruning

discontinue search below a MIN node if β value <= α value of ancestor

already searched

no need to search

discontinue search below a MAX node if α value >= β value of ancestor

already searched

no need to search

larger example
tic-tac-toe example

α-β vs. minimax:
- worst case: α-β examines as many states as minimax
- best case: assuming branching factor B and depth D, α-β examines $\sim 2b^{D/2}$ states (i.e., as many as minimax on a tree with half the depth)

Iterative deepening

a common approach in game search is to set a lookahead range
- e.g., in chess, lookahead 4 moves (by each player) and rate boards at that stage
- this catches wins/losses within that range
- presumably, you can better judge the state of the game in the future

if decisions are timed,
- you can pick a conservative lookahead range to ensure a choice is made
- if time remains, extend the lookahead range and try again
- each iteration looks deeper and so makes a more informed choice

clearly, there is redundancy with iterative deepening
- lookahead search of $(n+1)$ levels must reproduce the search for n levels
- HOW COSTLY IS THIS?