
1

CSC 321: Data Structures

Fall 2018

See online syllabus (also available through BlueLine):
http://dave-reed.com/csc321

Course goals:
§ To understand fundamental data structures (lists, stacks, queues, sets, maps, and

linked structures) and be able to implement software solutions to problems using
these data structures.

§ To achieve a working knowledge of various mathematical structures essential for
the field of computer science, including graphs, trees, and networks.

§ To develop analytical techniques for evaluating the efficiency of data structures and
programs, including counting, asymptotics, and recurrence relations.

§ To be able to design and implement a program to model a real-world system,
selecting and implementing appropriate data structures.

2

221 vs. 222 vs. 321
221: intro to programming via scripting

§ focused on the design & analysis of small scripts (in Python)
§ introduced fundamental programming concepts

üvariables, assignments, expressions, I/O
ücontrol structures (if, if-else, while, for), lists
ü functions, parameters, intro to OO

222: object-oriented programming
§ focused on the design & analysis of more complex programs (in Java)
§ utilized OO approach & techniques for code reuse

üclasses, fields, methods, objects
ü interfaces, inheritance, polymorphism, object composition
üsearching & sorting, Big-Oh efficiency, recursion

you should
be familiar
with these
concepts
(we will do
some
review next
week, but
you should
review your
own notes &
text)

321: data-driven programming & analysis
§ focus on problems that involve storing & manipulating large amounts of data
§ focus on understanding/analyzing/selecting appropriate structures for problems

üstandard collections (lists, stacks, queues, trees, sets, maps)
ümathematical structures (trees, graphs, networks)
üanalysis techniques (counting, asymptotics, recurrence relations)

3

When problems start to get complex…

…choosing the right algorithm and data structures are important
§ e.g., phone book lookup, Sudoku solver, path finder

§ must develop problem-solving approaches (e.g., brute force, backtracking)
§ be able to identify appropriate data structures (e.g., lists, trees, sets, maps)

example: dictionary lookup
§ you are given a large dictionary of 100K+ words
§ want to be able to store and lookup words

1. store in an unsorted ArrayList, perform sequential search
2. insert into a sorted ArrayList, perform binary search
3. store in an unsorted ArrayList, sort before each sequence of binary searches
4. store in a LinkedList or TreeSet (?) or HashSet (?)

§ the efficiency of each approach depends not only on the size of the dictionary, but
the pattern of operations

ü sequence of adds followed by sequence of searches?
ü mixture of adds and searches?

Another example: anagram finder
you are given a large dictionary of 100K+ words

repeatedly given a word, must find all anagrams of that word

pale à leap pale peal plea
stealà least setal slate stale steal stela taels tales teals tesla
banana à banana

4

§ there are many choices to be made & many "reasonable" decisions
ü how do you determine if two words are anagrams?
ü should you store the dictionary words internally? if so, how?
ü should you preprocess the words? if so, how?
ü is a simplistic approach going to be efficient enough to handle 100K+ words?
ü how do you test your solution?

5

Possible implementations
1. generate every permutation of the letters, check to see if a word

§ how many permutations are there?
§ will this scale?

2. compare against each word in the dictionary and test if an anagram
§ how costly to determine if two words are anagrams?
§ how many comparisons will be needed?
§ will this scale?

3. preprocess all words in the dictionary and index by their sorted form
§ e.g., store "least" and "steal" together, indexed by "aelst"
§ how much work is required to preprocess the entire dictionary?
§ how much easier is the task now?

HW1: credit card numbers
HW1 is posted

§ part1 is to be completed in 2-person teams, due in 1.5 weeks
we will meet to go over the code, go over holes in your knowledge/skills

§ part2 is to be completed individually, builds on part1 code

both parts involve verifying credit card numbers
§ Visa, Mastercard & Discover use 16-digits (6 for issuer, 9 for user account, 1 check)
§ American Express uses 15-digits (6 for issuer, 8 for user account, 1 check)
§ as a security measure, the numbers must conform to the Luhn Formula

6

4289 0298 1524 0026

4 2 8 9 0 2 9 8 1 5 2 4 0 0 2 6
8 16 0 18 2 4 0 4
8+2+7+9+0+2+9+8+2+5+4+4+0+0+4+6 = 70

HW1 part 1: working in pairs
1. read in digit sequences from a file

file name should be specified by user
one sequence per line (varying lengths), ignore spaces

2. for each, determine and display if valid or invalid

7

ADVICE: work with your partner –
you both should understand
everything in your program

be introspective – identify holes, help
each other, come see me!

HW1 part 2: working individually
1. display valid/invalid sequences in groups

within each group, display in numerical order (ignoring spaces)
2. in the case of a corrupted digit, determine the missing digit

a corrupted digit specified as '?'

8

NOTE: this part must be completed
individually, building upon your
team's code

come see me A LOT!

