CSC 321: Data Structures
Fall 2018

See online syllabus (also available through BlueLine):

Course goals:

To understand fundamental data structures (lists, stacks, queues, sets, maps, and
linked structures) and be able to implement software solutions to problems using
these data structures.

To achieve a working knowledge of various mathematical structures essential for
the field of computer science, including graphs, trees, and networks.

To develop analytical techniques for evaluating the efficiency of data structures and
programs, including counting, asymptotics, and recurrence relations.

To be able to design and implement a program to model a real-world system,
selecting and implementing appropriate data structures.



221 vs. 222 vs. 321

221 intro to programming via scripting
= focused on the design & analysis of small scripts (in Python)
= introduced fundamental programming concepts
v’ variables, assignments, expressions, 1/0
v’ control structures (if, if-else, while, for), lists
v’ functions, parameters, intro to OO

222 object-oriented programming
= focused on the design & analysis of more complex programs (in Java)
= utilized OO approach & techniques for code reuse
v’ classes, fields, methods, objects
v’ interfaces, inheritance, polymorphism, object composition
v’ searching & sorting, Big-Oh efficiency, recursion

321 data-driven programming & analysis

you should
be familiar
with these
concepts
(we will do
some
review next
week, but
you should
review your
own notes &
text)

= focus on problems that involve storing & manipulating large amounts of data
= focus on understanding/analyzing/selecting appropriate structures for problems

v’ standard collections (lists, stacks, queues, trees, sets, maps)
v’ mathematical structures (trees, graphs, networks)
v analysis techniques (counting, asymptotics, recurrence relations)




When problems start to get complex...

...choosing the right algorithm and data structures are important
= e.g., phone book lookup, Sudoku solver, path finder

= must develop problem-solving approaches (e.g., brute force, backtracking)
= Dbe able to identify appropriate data structures (e.qg., lists, trees, sets, maps)

example: dictionary lookup
= you are given a large dictionary of 100K+ words
= want to be able to store and lookup words

store in an unsorted ArrayList, perform sequential search

insert into a sorted ArrayList, perform binary search

store in an unsorted ArrayList, sort before each sequence of binary searches
store in a LinkedList or TreeSet (?) or HashSet (?)

o =

= the efficiency of each approach depends not only on the size of the dictionary, but
the pattern of operations
v sequence of adds followed by sequence of searches?
v mixture of adds and searches?



Another example: anagram finder

you are given a large dictionary of 100K+ words

repeatedly given a word, must find all anagrams of that word

pale = leap pale peal plea
steal—> least setal slate stale steal stela taels tales teals tesla
banana = banana

= there are many choices to be made & many "reasonable” decisions
v" how do you determine if two words are anagrams?
should you store the dictionary words internally? if so, how?
should you preprocess the words? if so, how?
is a simplistic approach going to be efficient enough to handle 100K+ words?

AN N NN

how do you test your solution?



Possible implementations

1.

generate every permutation of the letters, check to see if a word
= how many permutations are there?
= will this scale?

compare against each word in the dictionary and test if an anagram
= how costly to determine if two words are anagrams?

= how many comparisons will be needed?

= will this scale?

preprocess all words in the dictionary and index by their sorted form
* e.g., store "least" and "steal" together, indexed by "aelst"

= how much work is required to preprocess the entire dictionary?

= how much easier is the task now?



HW1: credit card numbers

HW1 is posted

= part1is to be completed in 2-person teams, due in 1.5 weeks
we will meet to go over the code, go over holes in your knowledge/skills
= part2 is to be completed individually, builds on part1 code

both parts involve verifying credit card numbers
= Visa, Mastercard & Discover use 16-digits (6 for issuer, 9 for user account, 1 check)
= American Express uses 15-digits (6 for issuer, 8 for user account, 1 check)
= as a security measure, the numbers must conform to the

4289 0298 1524 0026

4 2 8 902 98152400 2 6
8 16 0O 18 2 4 0 4
8+2+7+9+0+2+9+8+2+5+4+4+0+0+4+6 = 70



HW1 part 1: working in pairs

1. read in digit sequences from a file
file name should be specified by user
one sequence per line (varying lengths), ignore spaces

2. for each, determine and display if valid or invalid

4289 0298 7524 0023 ADVICE: work with your partner —
4289 0298 7524 0026

313 4890 444 2000 120 you both should understand

42 89 01 44 32 58 99 4 everything in your program

42 89 01 44 32 58 99 40
4289 0144 3258 9941

1234-5678-9876-5432 be introspective — identify holes, help

each other, come see me!
4289 0298 7524 0023 VALID

4289 0298 7524 0026 INVALID

313 4890 444 2000 120 VALID

42 89 01 44 32 58 99 4 VALID

42 89 01 44 32 58 99 40 INVALID

4289 0144 3258 9941 INVALID
1234-5678-9876-5432 INVALID




HW1 part 2: working individually

1.

display valid/invalid sequences in groups
within each group, display in numerical order (ignoring spaces)

in the case of a corrupted digit, determine the missing digit

a corrupted digit specified as '?"

4289 0298 7524 0023
4289 0298 7524 0026

313 4890 444 2000 120
42 89 01 44 32 58 99 4
42 89 01 44 32 58 99 40

NOTE: this part must be completed
individually, building upon your
team's code

4289 0144 3258 9941
1234-5678-9876-5432

4289 0298 7524 0022
4289 0298 2524 0026
4289 0298 2524 0022

SR

VALID

come see me ALOT!

313 4890 444 2000 120
42 89 01 44 32 58 99 4
4289 0298 1524 0026
4289 0298 7524 0023
4289 0298 7524 0023

INVALID
1234-5678-9876-5432

42 89 01 44 32 58 99 40
4289 0144 3258 9941
4289 0298 7524 0026
4289 0298 2524 0022




