CSC 321: Data Structures

Fall 2018

See online syllabus (also available through BlueLine): http://dave-reed.com/csc321

Course goals:

- To understand fundamental data structures (lists, stacks, queues, sets, maps, and linked structures) and be able to implement software solutions to problems using these data structures.
- To achieve a working knowledge of various mathematical structures essential for the field of computer science, including graphs, trees, and networks.
- To develop analytical techniques for evaluating the efficiency of data structures and programs, including counting, asymptotics, and recurrence relations.
- To be able to design and implement a program to model a real-world system, selecting and implementing appropriate data structures.

221 vs. 222 vs. 321

221: intro to programming via scripting

- focused on the design & analysis of small scripts (in Python)
- introduced fundamental programming concepts
 - \checkmark variables, assignments, expressions, I/O
 - ✓ control structures (if, if-else, while, for), lists
 - \checkmark functions, parameters, intro to OO
- 222: object-oriented programming
 - focused on the design & analysis of more complex programs (in Java)
 - utilized OO approach & techniques for code reuse
 - \checkmark classes, fields, methods, objects
 - ✓ interfaces, inheritance, polymorphism, object composition
 - ✓ searching & sorting, Big-Oh efficiency, recursion

321: data-driven programming & analysis

- focus on problems that involve storing & manipulating large amounts of data
- focus on understanding/analyzing/selecting appropriate structures for problems
 - ✓ standard collections (lists, stacks, queues, trees, sets, maps)
 - ✓ mathematical structures (trees, graphs, networks)
 - ✓ analysis techniques (counting, asymptotics, recurrence relations)

you should be familiar with these concepts (we will do some review next week, but you should review your own notes & text)

When problems start to get complex...

...choosing the right algorithm and data structures are important

- e.g., phone book lookup, Sudoku solver, path finder
- must develop problem-solving approaches (e.g., brute force, backtracking)
- be able to identify appropriate data structures (e.g., lists, trees, sets, maps)

example: dictionary lookup

- you are given a large dictionary of 100K+ words
- want to be able to store and lookup words
 - 1. store in an unsorted ArrayList, perform sequential search
 - 2. insert into a sorted ArrayList, perform binary search
 - 3. store in an unsorted ArrayList, sort before each sequence of binary searches
 - 4. store in a LinkedList or TreeSet (?) or HashSet (?)
- the efficiency of each approach depends not only on the size of the dictionary, but the pattern of operations
 - ✓ sequence of adds followed by sequence of searches?
 - mixture of adds and searches?

Another example: anagram finder

you are given a large dictionary of 100K+ words

repeatedly given a word, must find all anagrams of that word

pale \rightarrow leap pale peal plea steal \rightarrow least setal slate stale steal stela taels tales teals tesla banana \rightarrow banana

- there are many choices to be made & many "reasonable" decisions
 - \checkmark how do you determine if two words are anagrams?
 - ✓ should you store the dictionary words internally? if so, how?
 - \checkmark should you preprocess the words? if so, how?
 - ✓ is a simplistic approach going to be efficient enough to handle 100K+ words?
 - ✓ how do you test your solution?

Possible implementations

- 1. generate every permutation of the letters, check to see if a word
 - how many permutations are there?
 - will this scale?
- 2. compare against each word in the dictionary and test if an anagram
 - how costly to determine if two words are anagrams?
 - how many comparisons will be needed?
 - will this scale?

3. preprocess all words in the dictionary and index by their sorted form

- e.g., store "least" and "steal" together, indexed by "aelst"
- how much work is required to preprocess the entire dictionary?
- how much easier is the task now?

HW1: credit card numbers

HW1 is posted

- part1 is to be completed in 2-person teams, due in 1.5 weeks we will meet to go over the code, go over holes in your knowledge/skills
- part2 is to be completed individually, builds on part1 code

both parts involve verifying credit card numbers

- Visa, Mastercard & Discover use 16-digits (6 for issuer, 9 for user account, 1 check)
- American Express uses 15-digits (6 for issuer, 8 for user account, 1 check)
- as a security measure, the numbers must conform to the <u>Luhn Formula</u>

4289 0298 1524 0026

4 2 **8** 9 **0** 2 **9** 8 **1** 5 **2** 4 **0** 0 **2** 6 **8 16 0 18 2 4 0 4 8**+2+**7**+9+**0**+2+**9**+8+**2**+5+**4**+4+**0**+0+**4**+6 = 70

HW1 part 1: working in pairs

- 1. read in digit sequences from a file
 - file name should be specified by user one sequence per line (varying lengths), ignore spaces
- 2. for each, determine and display if valid or invalid

HW1 part 2: working individually

- 1. display valid/invalid sequences in groups within each group, display in numerical order (ignoring spaces)
- 2. in the case of a corrupted digit, determine the missing digit a corrupted digit specified as '?'

4289 0298 7524 0023 4289 0298 7524 0026 313 4890 444 2000 12 42 89 01 44 32 58 99 42 89 01 44 32 58 99 4289 0144 3258 9941 1234-5678-9876-5432	20 9 4 9 40	NO ⁻ indi tear	TE: this part must be completed vidually, building upon your n's code
4289 0298 7524 002?		com	ne see me A LOT!
4289 0298 ?524 0026	VALID		
4289 0298 ?524 002?			
	4289 0298 1524 0026		
-	4289 0298 7524 0023		
	4289 0298 7524 0023		
	INVALID		
	1234-5678-9876-5432		
	42 89 01 44 32 58 99	40	
	4289 0144 3258 9941		
	4289 0298 7524 0026		
	4289 0298 ?524 002?		
			1