CSC 321: Data Structures

Fall 2018

Lists, stacks & queues
= Collection classes:
— List (ArrayList, LinkedList), Set (TreeSet, HashSet), Map (TreeMap, HashMap)
ArrayList performance and implementation
LinkedList performance
= Stacks
* Queues

Java Collection classes

a collection is an object (i.e., data structure) that holds other objects

the Java Collection Framework is a group of generic collections
= defined using interfaces abstract classes, and inheritance

Collection

‘ more on Sets & Maps later ‘

ArrayList

OrderedMap

LinkedList [OrderedSet

TreeSet HashSet TreeMap HashMap

ArrayList performance

T e]
<<interface>> | <<interface>> |
Collection List
~+add(item:T): boolean +add(index:int, item:T): void
+clear(): void +get(index:int): T
+contains(item:Object): boolean +indexOf(item:Object): int
+isEmpty(): boolean +listlterator(): Listlterator<T>
+iterator(): iterator<T> +listlterator(index:int): Listlterator<T>
+remove(item:Object): boolean +remove(index:int): T
+size(): int +set(index:int, item:T): T
+toArray(): Object[]
recall: ArrayList implements the List interface
= which is itself an extension of the Collection interface
= underlying list structure is an array
get (index), add(item), set (index, item) > 0(1)

add (index, item), indexOf (item), contains (item),

remove (index), remove (item) > O(N)

ArrayList implementation

public class MyArrayList<E> implements Iterable<E>({

. private static final int INIT_SIZE = 10;
the ArrayList class private E[] items;
. private int numStored;
has as fields
. ublic MyA List () {
= the underlying array P his.clear () ;
= number of items)
stored

public void clear() {
this.numStored = 0;
this.ensureCapacity (INIT_SIZE);

the default initial ’

. . . public void ensureCapacity(int newCapacity) {
CapaC|ty IS deflned if (newCapacity > this.size()) {
E[] old this.items;
by a Constant this.items = (E[]) new Object[newCapacity];
- ity 1= oi for (int 1 = 0; i < this.size(); i++) {
CapaC|ty size this.items[i] = old[i];

}

interestingly: you can't create a generic array

this.items = new E[capacity]; // ILLEGAL

can work around this by creating an array of
Objects, then casting to the generic array type

ArrayList: add

the add method

= throws an exception if
the index is out of
bounds

= calls ensureCapacity to
resize the array if full

= shifts elements to the
right of the desired
index

= finally, inserts the new
value and increments
the count

the add-at-end method
calls this one

public void add(int index, E newItem) ({

this.rangeCheck (index, "ArrayList add ()", this.size());

if (this.items.length == this.size()) {
this.ensureCapacity(2*this.size() + 1);

}

for (int i = this.size(); i > index; i--) {
this.items[i] = this.items[i-1];

}

this.items[index] = newlItem;

this.numStored++;

}

private void rangeCheck (int index, String msg, int upper) {

if (index < 0 || index > upper)
throw new IndexOutOfBoundsException("\n" + msg +
: index " + index + " out of bounds. " +
"Should be in the range 0 to " + upper);

public boolean add(E newItem) {
this.add(this.size (), newlItem);
return true;

ArrayList: size, get, set, indexOf, contains

size method

= returns the item
count

get method

= checks the index
bounds, then simply
accesses the array

set method

= checks the index
bounds, then
assigns the value

indexOf method

= performs a
sequential search

contains method

public int size() {

}

return this.numStored;

public E get (int index) {

}

this.rangeCheck (index, "ArrayList get()", this.size()-1);
return items[index];

public E set(int index, E newItem) {

}

this.rangeCheck (index, "ArrayList set ()", this.size()-1);
E oldItem = this.items[index];

this.items[index] = newItem;

return oldItem;

public int indexOf (E oldItem) {

}

for (int i = 0; 1 < this.size(); i++) {
if (oldItem.equals(this.items[i])) {
return i;
}
}

return -1;

public boolean contains (E oldItem) {

}

return (this.indexOf (oldItem) >= 0);

= yses indexOf

ArrayList: remove

the remove
method public void remove (int index) {
. this.rangeCheck (index, "ArrayList remove()", this.size()-1);
= checks the index
bOUﬂdS for (int i = index; i < this.size()-1; i++)
n then Shlﬂs Items this.items[i] this.items[i+1];

to the left and
decrements the
count

= note; could shrink
size if becomes %2
empty

the other remove
= calls indexOf to

}

this.numStored--;

public boolean remove (E oldItem) {

int index = this.indexOf (oldItem);

if (index >= 0) {
this.remove (index) ;
return true;

}

return false;

find the item, then
calls
remove(index)

ArrayLists vs. LinkedLists

LinkedList is an alternative List structure
= stores elements in a sequence but allows for more efficient interior insertion/deletion
= elements contain links that reference previous and successor elements in the list

front | —4———»

null

4 5

6

null

[T—E 10—

[T—

+ -

=

= can access/add/remove from either end in O(1)

= if given a reference to an interior element, can reroute the links to add/remove an
elementin O(1) [more later when we consider iterators]

getFirst (), getlLast(),
add(item), addFirst(),

removeFirst (),

addLast ()
removelLast ()

-> 0(1)

get (index), set (index,
add (index, item),
remove (index),

item),
indexOf (item),

remove (item)

contains (item),

-> O(N)

Lists & stacks

stack
= astack is a special kind of (simplified) list
= can only add/delete/look at one end (commonly referred to as the top)

DATA: sequence of items
OPERATIONS: push on top, peek at top, pop off top, check if empty, get size

these are the ONLY operations allowed on a stack

— stacks are useful because they are simple, easy to understand
— each operation is O(1)

= PEZ dispenser

= deck of cards a stack is also known as
. . = push-down list
" carsinadriveway = lastin-frst-out (LIFO) lst

= method activation records (later)

Stack examples
top 3 peek() = 3 top 3
2 > 2
1 1
push(4) pop() = 3
top 4 |
3
2 top 2
1 1

Stack exercise

+ start with empty stack

* PUSH 1
* PUSH 2
+ PUSH3
+ PEEK
+ PUSH 4
+ POP

+ POP

+ PEEK
+ PUSH 5

Stack<T> class

since a stack is a common data structure, a predefined Java class exists

import java.util.Stack;

= Stack<T> is generic to allow any type of object to be stored

Stack<String> wordStack = new Stack<String>();

Stack<Integer> numStack = new Stack<Integer>();

= standard stack<T> methods

public T push(T item); // adds item to top of stack
public T pop(); // removes item at top of stack
public T peek(); // returns item at top of stack
public boolean empty () ; // returns true if empty

public int size(); // returns size of stack

Stack application

consider mathematical expressions such as the following
= a compiler must verify such expressions are of the correct form

(A*(B+C) (A*(B+C)]+[D"E)

attempt 1: count number of left and right delimeters; if equal, then OK
what about; (A*B) +)C(

attempt 2: start a counter at 0, +1 for each left delimiter and -1 for each right
if it never becomes negative and ends at 0, then OK
what about: (A+B)+C]

stack-based solution:
= start with an empty stack of characters
= traverse the expression from left to right
+ if next character is a left delimiter, push onto the stack
+ if next character is a right delimiter, must match the top of the stack

Delimiter matching

import java.util.Stack;

public class DelimiterChecker ({
private static final String DELIMITERS = " () []{}<>";

public static boolean check(String expr) {
Stack<Character> delimStack = new Stack<Character>();

for (int 1 = 0; i < expr.length(); i++) {
char ch = expr.charAt(i);
if (DelimiterChecker.isLeftDelimiter (ch)) {
delimStack.push (ch) ;
}

else if (DelimiterChecker.isRightDelimiter (ch)) {
if (!delimStack.empty() &&
DelimiterChecker.match(delimStack.peek (), ch)) {
delimStack.pop () ;
}
else {
return false; .
) how would you implement the helpers?
}
} isLeftDelimiter
return delimStack.empty () ; lSnghtDellmlter
} match

Run-time stack

when a method is called in Java (or any language):
= suspend the current execution sequence
= allocate space for parameters, locals, return value, ...
= transfer control to the new method

when the method terminates:
= deallocate parameters, locals, ...
= transfer control back to the calling point (& possibly return a value)

note: method invocations are LIFO entities
= main is called first, terminates last
= if main calls foo and foo calls bar, then
bar terminates before foo which terminates before main

=> a stack is a natural data structure for storing information about
method calls and the state of the execution

Run-time stack (cont.)

an activation record stores info (parameters, locals, ...) for each invocation of
a method

= when the method is called, an activation record is pushed onto the stack
= when the method terminates, its activation record is popped

= note that the currently executing method is always at the top of the stack

public class Demo {
public static void main(String[] args) { Foo (a=12) :
int x = 12; 2 € 13

Demo. foo (x);
System.out.println("main " + x); main(?): main(?): main(?):

} x € 12 x €12 x € 12

public static void foo(int a) {

att; automatically whenfoo ~ whenfoo when main done,

System.out.println("foo " + a);

} start with main called, push ~ done, pop pop & end

}

Lists & queues

queues
= a queue is another kind of simplified list
= add at one end (the back), delete/inspect at other end (the front)

DATA: sequence of items
OPERATIONS: add(enqueue/offer at back), remove(dequeue off front),
peek at front, check if empty, get size

these are the ONLY operations allowed on a queue
— queues are useful because they are simple, easy to understand
— each operation is O(1)

= line at bank, bus stop, grocery store, ...

= printer jobs a queue is also known as
= first-in-first-out (FIFO) list

= CPU processes

= voice mail

Queue examples

peek() > 1
>
back front back front
add(4) remove() > 1

L e 2] 1]

back front back front

Queue exercise

+ start with empty queue
« ADD1

« ADD2

« ADD3

« PEEK

« ADD4

+ REMOVE

+ REMOVE

« PEEK

« ADD5

19
Queue Interface Queue<Integer> numQ = new LinkedList<Integer>();
. for (int 1 = 1; i <= 10; i++) |
a queue is a common data R
structure, with many variations !
= Java provides a Queue interface while (InumQ.empty()) {
= also provides several classes that System.out.println(nunQ.peek());
implement the interface (with different num. remove ()7
underlying implementations/tradeoffs) !
java Lutil. Queue<T> Interface Queue<Integer> gl = new LinkedList<Integer>();
Queue<Integer> g2 = new LinkedList<Integer>();
public boolean add(T newItem); for (int i = 1; i <= 10; i++) |
public T remove(); gl.add (i) ;
public T peek(); }
public boolean empty();
public int size(); while (!gl.empty()) {
g2.add(gl.remove()) ;
}
java.util.LinkedList<T>
implements the Queue interface while (tq2.empty()) {
System.out.println(g2.remove());
}
20

10

Queues and simulation
queues are especially useful for simulating events

e.g., consider simulating a 1-teller bank
= customers enter a queue and are served FCFS (or FIFO)
= can treat the arrival of a customer and their transaction length as random events

What is the time duration (in minutes) to be simulated? 10
What percentage of the time (0-100) does a customer arrive? 30

2: Adding customer 1 (job length = 4)
2 Serving customer 1 (finish at 6)
4: Adding customer 2 (job length = 3)
6: Finished customer 1
6 Serving customer 2 (finish at 9)
9 Finished customer 2

if multiple tellers are available,
= could have a separate queue for each teller (FAIRNESS ISSUES?)

= or, could still have one queue, whenever a teller becomes free he/she serves the
customer at the front

21

11

