
1

1

CSC 321: Data Structures

Fall 2018

Hash tables
§ HashSet & HashMap
§ hash table, hash function
§ collisions

Ø linear probing, lazy deletion, clustering, rehashing
Øchaining

§ Java hashCode method

2

HashSet & HashMap

recall: TreeSet & TreeMap use an underlying binary search tree (actually,
a red-black tree) to store values
§ as a result, add/put, contains/get, and remove are O(log N) operations
§ iteration over the Set/Map can be done in O(N)

the other implementations of the Set & Map interfaces, HashSet &
HashMap, use a "magic" data structure to provide O(1) operations*

*legal disclaimer: performance can degrade to O(N) under bad/unlikely conditions
however, careful setup and maintenance can deliver O(1) in practice

the underlying data structure is known as a Hash Table

2

3

Hash tables
a hash table is a data structure that supports constant time insertion,
deletion, and search on average

§ degenerative performance is possible, but unlikely
§ it may waste some storage
§ iteration order is not defined (and may even change over time)

idea: data items are stored in a table, based on a key
§ the key is mapped to an index in the table, where the data is stored/accessed

example: letter frequency
§ want to count the number of occurrences of each letter in a file

§ have an array of 26 counters, map each letter to an index

§ to count a letter, map to its index and increment

1
0
3

. . .
0

"A" à 0

"B" à 1

"C" à 2

"Z" à 25

4

Mapping examples
extension: word frequency

§ must map entire words to indices, e.g.,

"A" à 0 "AA" à 26 "BA" à 52 . . .
"B" à 1 "AB" à 27 "BB" à 53 . . .

.
"Z" à 25 "AZ" à 51 "BZ" à 77. . .

§ PROBLEM?

mapping each potential item to a unique index is generally not practical
of 1 letter words = 26
of 2 letter words = 262 = 676
of 3 letter words = 263 = 17,576
. . .

§ even if you limit words to at most 8 characters, need a table of size 217,180,147,158
§ for any given file, the table will be mostly empty!

3

5

Table size < data range
since the actual number of items stored is generally MUCH smaller than the

number of potential values/keys:
§ can have a smaller, more manageable table

e.g., table size = 26
possible mapping: map word based on first letter

"A*" à 0 "B*" à 1 . . . "Z*" à 25

e.g., table size = 1000
possible mapping: add ASCII values of letters, mod by 1000

"AB" à 65 + 66 = 131

"BANANA" à 66 + 65 + 78 + 65 + 78 + 65 = 417

"BANANABANANABANANA" à 417 + 417 + 417 = 1251 % 1000 = 251

§ POTENTIAL PROBLEMS?

6

Collisions
the mapping from a key to an index is called a hash function

§ the hash function can be written independent of the table size
§ if it maps to an index > table size, simply wrap-around (i.e., index % tableSize)

since |range(hash function)| < |domain(hash function)| ,
Pigeonhole Principle ensures collisions are possible (v1 & v2 à same index)

"ACT" à 67 + 65 + 84 = 216 "CAT" à 67 + 65 + 84 = 216

techniques exist for handling collisions, but they are costly (LATER)
it's best to avoid collisions as much as possible – HOW?

§ want to be sure that the hash function distributes the key evenly

§ e.g., "sum of ASCII codes" hash function
OK if table size is 1000
BAD if table size is 10,000

most words are ≤ 10 letters, so max sum of ASCII codes = 1,270
so most entries are mapped to first 13% of table

4

7

Better hash function

a good hash function for words should
§ produce an even spread, regardless of table size
§ take order of letters into account (to handle anagrams)

§ the hash function used by java.util.String multiplies the ASCII code for
each character by a power of 31

hashCode() = char0*31(len-1) +char1*31(len-2) + char2*31(len-3) + … + char(len-1)

where len = this.length(), chari = this.charAt(i):

/**
* Hash code for java.util.String class
* @return an int used as the hash index for this string
*/

private int hashCode() {
int hashIndex = 0;

for (int i = 0; i < this.length(); i++) {
hashIndex = (hashIndex*31 + this.charAt(i));

}
return hashIndex;

}

8

Word frequency example
returning to the word frequency problem

§ pick a hash function
§ pick a table size

§ store word & associated count in the table

§ as you read in words,
map to an index using the hash function
if an entry already exists, increment
otherwise, create entry with count = 1

"FOO"
1

. . .

"BAR"
3

0

1

2

999

WHAT ABOUT COLLISIONS?

5

9

Linear probing
linear probing is a simple strategy for handling collisions

§ if a collision occurs, try next index & keep looking until an empty one is found
(wrap around to the beginning if necessary)

example: assume "first letter" hash function
§ insert "BOO", "BAR", "COO", "BOW, …

linear probing requires "lazy deletion"
§ when you delete an item, you can't just empty

the location, since it would leave a hole
§ subsequent searches would reach that whole

and stop probing
§ instead, leave a marker (a.k.a a tombstone)

in that spot 0 can be overwritten but not
skipped when probing

example: given above insertions
§ delete "BAR", search for "COO"

. . .

0

1

2

25

3

4

10

Clustering and load factor
in practice, probes are not independent

§ as the table fills, clusters appear that degrade performance

maps to 0, 5-7 require 1 check
map to 4 requires 2 checks
map to 3 requires 3 checks
map to 2 requires 4 checks
map to 1 requires 5 checks
average = 18/8 = 2.25 checks

"BOO"

"BIZ"

"COO"

"DOG"

0

1

2

3

4

5

6

7

the load factor λ is the fraction of the table that is full
empty table λ = 0 half full table λ = 0.5 full table λ = 1

THEOREM: assuming a reasonably large table, the average number of
locations examined per insertion is roughly (1 + 1/(1-λ)2)/2

empty table (1 + 1/(1 - 0)2)/2 = 1
half full (1 + 1/(1 – .5)2)/2 = 2.5
3/4 full (1 + 1/(1 - .75)2)/2 = 8.5
9/10 full (1 + 1/(1 - .9)2)/2 = 50.5

6

11

Rehashing

as long as you keep the load factor low (e.g., < 0.75), inserting, deleting and
searching a hash table are all O(1) operations

if the table becomes too full, then must resize
§ create new table at least twice as big
§ just copy over table entries to same locations???
§ NO! when you resize, you have to rehash existing entries

new table size à new hash function (+ different wraparound)

0

1

2

3

4

5

6

7

0

1

2

3

LET hashCode = word.length()

ADD "UP"

ADD "OUT"

ADD "YELLOW"

NOW
RESIZE
AND
REHASH

12

Chaining
linear probing (or variants) were initially used when memory was expensive

§ clustering, lazy deletion, and rehashing are all issues

modern languages like Java utilize a different approach

chaining:
§ each entry in the hash table is a

bucket (list)

§ when you add an entry, hash to
correct index then add to bucket

§ when you search for an entry, hash
to correct index then search
sequentially

.

.

.

0

1

2

3

25

"AND" "APPLE"

"CAT" "COO" "COWS"

"DOG"

7

13

Analysis of chaining

in practice, chaining is generally faster than probing
§ cost of insertion is O(1) – simply map to index and add to list

§ cost of search is proportional to number of items already mapped to same index
e.g., using naïve "first letter" hash function, searching for "APPLE" might requires

traversing a list of all words beginning with 'A'

if hash function is fair, then average size of each bucket is λ (load factor)
à average cost of a successful search is roughly λ/2

chaining is sensitive to the load factor, but not as much as probing – WHY?

chaining uses more memory – WHY?

Hashtable class

14

Java provides a basic hash table
implementation
§ utilizes chaining
§ can specify the initial table size &

threshold for load factor
§ can even force a rehashing

not commonly used, instead
provides underlying structure for
HashSet & HashMap

8

15

HashSet & HashMap
java.util.HashSet and java.util.HashMap use hash table w/ chaining

§ e.g., HashSet<String> HashMap<String, Integer>

.

.

.

0

1

2

3

25

"AND" "APPLE"

"CAT" "COO" "COWS"

"DOG"

.

.

.

0

1

2

3

25

"AND"

4

"APPLE"

1

"CAT"

2

"COO"

1

"COWS"

3

"DOG"

2

note: iterating over a HashSet or HashMap is: O(num stored + table size) WHY?

§ defaults: table size = 16, max capacity before rehash = 75%
can override these defaults in the HashSet/HashMap constructor call

16

Word
frequencies
(again)

using HashMap
instead of TreeMap
§ containsKey, get & put

operations are all O(1)*
§ however, iterating over

the keySet (and their
values) does not
guarantee any order

§ if you really care about
speed à use
HashSet/HashMap

§ if the data/keys are
comparable & order
matters à use
TreeSet/TreeMap

import java.util.Map;
import java.util.HashMap;
import java.util.Scanner;
import java.io.File;

public class WordFreq {
private Map<String, Integer> words;

public WordFreq() {
words = new HashMap<String, Integer>();

}

public WordFreq(String filename) {
this();
try {

Scanner infile = new Scanner(new File(filename));
while (infile.hasNext()) {

String nextWord = infile.next();
this.add(nextWord);

}
}
catch (java.io.FileNotFoundException e) {

System.out.println("FILE NOT FOUND");
}

}

public void add(String newWord) {
String cleanWord = newWord.toLowerCase();
if (words.containsKey(cleanWord)) {

words.put(cleanWord, words.get(cleanWord)+1);
}
else {

words.put(cleanWord, 1);
}

}

public void showAll() {
for (String str : words.keySet()) {

System.out.println(str + ": " + words.get(str));
}

}
}

9

hashCode function

a default hash
function is
defined for every
Object
§ uses native

code to access
& return the
address of the
object

17

overriding hashCode v.1

can override
hashCode if more
class-specific
knowledge helps

1. must consistently map
the same object to the
same index

2. must map equal
objects to the same
index

18

10

overriding hashCode v.2

to avoid birthday
collisions, can also
incorporate the
names
§ utilize the String

hashCode method

19

20

Graphs (sneak peek)

trees are special instances of the more general data structure: graphs
§informally, a graph is a collection of nodes/data elements with connections

a tree is a graph in which one node has no edges coming into it (the root)
and no cycles

11

Finite State Machines (FSMs)

many useful problems can be defined using simple graphs
§ a Finite State Machine (a.k.a. Finite Automaton) defines a finite set of states (i.e.,

nodes) along with transitions between those states (i.e., edges)

e.g., the logic controlling a coin-operated turnstile

21

can be in one of two states: locked or unlocked
§ if locked, pushing à it does not allow passage & stays locked

inserting coin à unlocks it
§ if unlocked, pushing à allows passage & then relocks

inserting coin à keeps it unlocked

Other examples

22

Claude Shannon used a
FSM to show constraints on
Morse code

5¢

10¢

20¢

15¢

25¢

0¢

30¢

Q

Q

D

D D

D
D

DN

N

N

N

Q

N

N

N

35¢ can use a FSM to specify the
behavior of a vending
machine

adding a coin (Q, D, N) changes the
state

12

HW6: Simulate a FSM

23

locked push locked
locked coin unlocked
unlocked push locked
unlocked coin unlocked

model a FSM by storing the edges and providing lookup methods

private HashMap<StateLabel, HashMap<EdgeLabel, StateLabel>> table;

locked

unlocked
coin unlocked

push locked

coin unlocked

push locked

the key to the table is the start state of an edge
the value is another map, which maps edge

labels to the end states

table.get("locked") à
a map containing edges from "locked"

table.get("locked").get("coin") à
"unlocked"

HW6: Other examples

24

inLetter . inLetter
inLetter – inLetter
inLetter _ betweenLetters
inLetter __ betweenLetters
betweenLetters . inLetter
betweenLetters - inLetter

5¢

10¢

20¢

15¢

25¢

0¢

30¢

Q

Q

D

D D

D
D

DN

N

N

N

Q

N

N

N

35¢

0cents N 5cents
0cents D 10cents
0cents Q 25cents
5cents N 10cents
5cents D 15cents
5cents Q 30cents
10cents N 15cents
10cents D 20cents
10cents Q 35cents
15cents N 20cents
15cents D 25cents
20cents N 25cents
20cents D 30cents
25cents N 30cents
25cents D 35cents
30cents N 35cents

13

HW6: PathTracer

25

locked push locked
locked coin unlocked
unlocked push locked
unlocked coin unlocked

given a start state and sequence of edges, determine the end state

HW6: PathFinder

26

you are given a method that finds a shortest path between to states
fsm.findPath("0cents","35cents") à ["0cents","10cents","35cents"]

§ you will write a driver class that repeatedly finds and prints paths

5¢

10¢

20¢

15¢

25¢

0¢

30¢

Q

Q

D

D D

D
D

DN

N

N

N

Q

N

N

N

35¢

