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CSC 321: Data Structures

Fall 2018

Counting and proofs
§ mappings, bijection rule
§ sequences, product rule, sum rule
§ generalized product rule, permutations
§ division rule, inclusion/exclusion
§ pigeonhole principle
§ proof techniques: direct, by-contradiction, by-induction
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Bijections

it is often easier to count one thing by counting another
e.g., to count sheep, count legs and divide by 4

recall:
a function (f : D à R) is a mapping from elements of a domain D to elements of a 

range R
e.g., sqrt: R à R abs: R à R+

a bijective function or bijection is a one-to-one mapping between two sets 
e.g., current Creighton students & staff, active netIDs

each student/staff has a unique netID; each netID has a unique student/staff
e.g., f : R à R where f(x) = 2x+1

each x maps to a unique f(x); each f(x) has a unique x

Bijection Rule: If there is a bijection f : A à B,  then |A| = |B|. 
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Application: bijection rule
A = # of ways to assign letter grades (A/B/C/D/F) to 10 students
B = # of 14 bit patterns with exactly four 1's

consider grades from A: 2 A's, 4 B's, 1 C, 2 D's, 1 F

map to a bit pattern from B: 00100001010010

this is a 1-to-1 mapping, so |A| = |B|
§ if we can determine the size of either set, then we know the size of the other
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Sequences

general strategy:
focus on techniques for counting sequences, then
for each counting problem to be solved, try to map it into sequences

recall:
if P1, P2, …, Pn are sets, then P1× P2×… × Pn is the set of all sequences where 

the 1st term is from P1, 2nd term is from P2, …, nth term is from Pn

§ e.g., C = {red, blue}, N = {1, 2, 3}, 
C × N = {red-1, red-2, red-3, blue-1, blue-2, blue-3}

Product Rule: if P1, P2, …, Pn are sets, then 

|P1× P2×… × Pn| = |P1| * |P2| * … * |Pn|   
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Application: product rule
suppose we are trying to build a computer out of components

P = { i5, i7 }
R = { 2GB, 4GB, 8GB } 
C = { 1MB, 2MB, 4MB }

how many combinations of processor, RAM & cache are there to choose 
from?
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§ |P × R × C| = |P| * |R| * |C| = 2 * 3 * 3 = 18

{ i5-2GB-1MB, i5-2GB-2MB, i5-2GB-4MB, 
i5-4GB-1MB, i5-4GB-2MB, i5-4GB-4MB,
i5-8GB-1MB, i5-8GB-2MB, i5-8GB-4MB, 
i7-2GB-1MB, i7-2GB-2MB, i7-2GB-4MB, 
i7-4GB-1MB, i7-4GB-2MB, i7-4GB-4MB,
i7-8GB-1MB, i7-8GB-2MB, i7-8GB-4MB }

Application: product rule
how many possible subsets of a set of N elements?

S = { x1, x2, …, xn }

can map each subset into a sequence of N bits: bi = 1 à xi in subset

{ x1, x4, x5 } ßà 10011000…0
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§ for an N-element set, count number of N-bit sequences

| {0,1} × {0,1} × {0,1} ×… × {0, 1} | = | {0,1} |n = 2n

e.g., S = {a, b, c}
subsets of S = { { }, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

|subsets of S| = 2|S| = 23 = 8
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Combining rules
many problems involve a combination of counting methods

Sum Rule: if S1, ..., Sn are disjoint sets, then |S1 U … U Sn| = |S1|+…+|Sn|
Division Rule: if f : A à B is k-to-1, then |A| = k * |B|. 

suppose a computer system requires 6-8 character passwords, consisting 
of letters & digits that must start with a letter
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§ alpha = { a, b, …, z, A, B, …, Z }
§ anum = alpha U { 0, 1, 2, …, 9 }

passwords = (6-char passwords) U (7-char passwords) U (8-char passwords)
= (alpha × anum5) U (alpha × anum6) U (alpha × anum7)

| passwords | = | (alpha × anum5) U (alpha × anum6) U (alpha × anum7) |
= | alpha × anum5 | + | alpha × anum6 | + | alpha × anum7 |   [Sum Rule]
= |alpha|*|anum|5 + |alpha|*|anum|6 + |alpha|*|anum|7 [Product Rule]
= 52*625 + 52*626 + 52*627

= 186,125,210,680,448

Generalized product rule
the product rule assumes that the choices are independent

§ pick-4 lotto: 4 bins of balls numbered 0-9.
| {0..9} × {0..9} × {0..9} × {0..9} | = |{0..9}|4 = 104 = 10,000 

what about a lottery where balls numbered 1-42 are in a bin & draw 4?
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Generalized Product Rule: Let S be a set of length-k sequences. If there are: 
• n1 possible first entries,
• n2 possible second entries for each first entry, 
• n3 possible third entries for each combination of first and second entries, etc. 

then: 
| S | = n1 * n2 * n3 * … * nk

§ | 4-ball draws | = 42 * 41 * 40 * 39 = 2,686,320
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Counting subsets
the lottery problem is an example of a more generic problem

§ how many k-element subsets of an n-element set are there?
§ e.g., how many 4-ball lottery numbers are there (assuming 42 balls)?
§ e.g., how many 5-card poker hands are there (assuming 52 cards)?
§ e.g., how many 3-topping pizzas are there (assuming 10 toppings)?

"n choose k" is such a common expression that it has its own notation:  
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§ can map any permutation of n items into a k-element subset by simply taking the 
first k elements of in the permutation

§ this is not a 1-1 mapping though, since any arrangement of the k-element prefix 
and (n-k)-element suffix yields the same subset

§ Division rule à |perms| = |perms of prefix| * |perms of suffix| * 
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Pascal's identity
"n choose k" can also be defined using recursion

§ select a "special" element of the list  (e.g., lottery ball #1)

|subsets| = |subsets that include special element| + |subsets that don't|
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e.g., choose 4 out of 42 lottery balls =
choose 3 out of 41 balls  (includes 1) +
choose 4 out of 41 balls (doesn't include 1)
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Application: hand counting
how many different 4-of-a-kind hands are there?

§ can define a bijection with the sequence:
rank of matching cards, rank of 5th card, suit of 5th card

§ Generalized Product Rule:

|sequences| = |rank of matching|*|rank of 5th|*|suit of 5th|
= 13 * 12 * 4
= 624

§ there are "52 choose 5" possible hands = 52!/(47!5!) = 2,598,960

§ odds of drawing 4-of-a-kind are 624/2598960 ≈ 1/4165 
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Application: hand counting
how many different full house hands are there?

§ can define a bijection with the sequence:
rank of 3, suits of 3, rank of 2, suits of 2

§ Generalized Product Rule:

|sequences| = |rank of 3|*|suits of 3|*|rank of 2|*|suits of 2|
= 13 * (4 choose 3) * 12 * (4 choose 2)
= 13 * 4!/(3!1!) * 12 * 4!/(2!2!)
= 13 * 24/6 * 12 * 24/4
= 3,744

§ odds of drawing a full house are 3744/2598960 ≈ 1/694 
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Application: hand counting
how many different 2-pair hands are there?

§ can define a mapping with the sequence:
rank of 1st pair, suits of 1st pair, rank of 2nd pair, suits of 2nd pair, 
rank of extra, suit of extra

§ Generalized Product Rule:

|sequences| = 13 * (4 choose 2) * 12 * (4 choose 2) * 11 * 4
= 13 * 4!/(2!2!) * 12 * 4!/(2!2!) * 11 * 4
= 13 * 24/4 * 12 * 24/4 * 11 * 4
= 247,104

§ odds of drawing 2-pairs are 247104/2598960 ≈ 1/11 
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WRONG:  the mapping is not a bijection
3CSQHSAD and QHS3CSAD map to the same hand
2-to-1 mapping, so 247104/2 = 123,552 hands (≈ 1/22)

Set overlap
recall the Sum Rule: if S1, ..., Sn are disjoint sets, then |S1 U … U Sn| = |S1|+…+|Sn|

§ but what if the sets are not disjoint?

suppose JM&C has 50 CSI majors and 30 GDE majors
§ that doesn't necessarily mean 80 distinct majors

total majors = CSI majors + GDE majors – (dual majors)

Inclusion/Exclusion Rule:  
|S1 U S2 U … U Sn| = the sum of the sizes of the individual sets –

the sizes of all two-way intersections +

the sizes of all three-way intersections –
the sizes of all four-way intersections  +

. . .
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Pigeonhole principle
suppose your sock drawer contains black, brown, and white socks

§ if you grab socks at random, how many must you grab to ensure a match?

Pigeonhole Principle: if |X| > |Y|, then for every total function f : X à Y, there exist 
two different elements of X that are mapped to the same element of Y 

§ need to grab 4 socks to make |socks| > |colors|

§ how many people must be in a room to ensure at least one shared birthday?
(only requires 57 for a 99% probability)
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Direct proofs
the simplest kind of proof is a logical explanation or demonstration

CLAIM: The best case for sequential search is O(1)
PROOF: Suppose the item to be found is in the first index.  Then sequential search will find 

it on the first check.  You can't find something in fewer than one check.
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CLAIM: you can add to either end of a doubly-linked list in O(1) time.
PROOF:

• add at front front = new DNode(3, null, front); à O(1)
if (front.getNext() == null) { à O(1)

back = front; à O(1)
}
else {

front.getNext().setPrevious(front); à O(1)
}

• add at back back = new DNode(3, back, null); à O(1)
if (back.getPrevious() == null) { à O(1)

front = back à O(1)
}
else {

back.getPrevious().setNext(back); à O(1)
}
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Proof by contradiction
to disprove something, all you need to do is find a counter-example
CLAIM: every set has an even number of elements.
DISPROOF: { 4 }

however, you can't prove a general claim just by showing examples
CLAIM: there is no largest integer
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to prove a claim by contradiction
§ assume the opposite and find a logical contradiction

CLAIM: there is no largest integer
PROOF: Assume there exists a largest integer.  Call that largest integer N.  

But N+1 is also an integer (since the sum of two integers is an integer), and N+1 > N.  
This contradicts our assumption, so the original claim must be true.

Proof by induction
inductive proofs are closely related to recursion

§ prove a parameterized claim by building up from a base case

To prove some property is true for all N ≥ C (for some constant C):
BASE CASE: Show that the property is true for C.
HYPOTHESIS: Assume the property is true for all n < N
INDUCTIVE STEP:  Show that that the property is true for N.
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CLAIM: 1+2+…+N = N(N+1)/2
BASE CASE: N =1. 1 = 1(1+1)/2  ✓
HYPOTHESIS: Assume the relation holds for all n < N, e.g., 1+2+…+(N-1) = (N-1)N/2.
INDUCTIVE STEP: Then  1+2+…+N = [1+2+…+(N-1)]+N regrouping

= (N-1)N/2 + N  by hypothesis
= (N2 – N)/2 + 2N/2 simplification
= (N2 + N)/2 simplification
= N(N+1)/2  ✓



10

Proof by induction
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FUNDAMENTAL THEOREM OF ARITHMETIC: every integer N > 1 is either 
prime or the product of primes

BASE CASE: N=2. 2 is prime.

HYPOTHESIS: Assume true for n < N.

INDUCTIVE STEP? 
Either N is a prime number or not. 
If N is prime, the assertion is proven.
If not, then N = x1*x2*…*xk, where each xi < N (by the definition of non-prime).
By the induction hypothesis, 

each xi is either prime or a product of primes xi= pi1*…*pij
Thus, N = x1*x2*…*xk = p11*…*p1j * . . . * pk1*…*pkj is a product of primes.

Exercise: prove by induction
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A pyramid of blocks with height H consists of H(H+1)/2 blocks.

BASE CASE: 

HYPOTHESIS:

INDUCTIVE STEP:


