CSC 321: Data Structures

Fall 2018

Counting and proofs
= mappings, bijection rule
= sequences, product rule, sum rule
= generalized product rule, permutations
= division rule, inclusion/exclusion
= pigeonhole principle
= proof techniques: direct, by-contradiction, by-induction

Bijections

it is often easier to count one thing by counting another
e.g., to count sheep, count legs and divide by 4

recall:

a function (f: D = R) is a mapping from elements of a domain D to elements of a
range R

e.g,sqt: R>R abs:R > R+

a bijective function or bijection is a one-to-one mapping between two sets
e.g., current Creighton students & staff, active netlDs
each student/staff has a unique netID; each netID has a unique student/staff
e.g., f: R 2> Rwhere f(x) = 2x+1
each x maps to a unique f(x); each f(x) has a unique x

Bijection Rule: If there is a bijection f: A= B, then |A| = |B|.




Application: bijection rule

A =# of ways to assign letter grades (A/B/C/D/F) to 10 students
B = # of 14 bit patterns with exactly four 1's

consider grades from A:

2 A's, 4 B's, 1C, 2D's, 1F
map to a bit pattern from B: OO&)OOO/KIO/

this is a 1-to-1 mapping, so |A| = |B|
= if we can determine the size of either set, then we know the size of the other

= [BI= () = 141041 = 14°13*12"1/4°3°2*1 = 71311 = 1,001

Sequences

general strategy:
focus on techniques for counting sequences, then
for each counting problem to be solved, try to map it into sequences

recall:
if Py, Py, ..., P, are sets, then P, X P, X ... X P, is the set of all sequences where
the 15t term is from P, 2" term is from P,, ..., nt term is from P,

= eg,C={red, blue}, N={1,2, 3},
C X N={red-1, red-2, red-3, blue-1, blue-2, blue-3}

Product Rule: if P,, P,, ..., P, are sets, then

Py X Py X X Py = [Py| [Pyl * .. * [Py




Application: product rule

suppose we are trying to build a computer out of components
P={i5,i7}
R ={2GB, 4GB, 8GB}
C ={1MB, 2MB, 4MB }

how many combinations of processor, RAM & cache are there to choose
from?

» P xR x C|=|P|*R|*|C|=2*3*3=18

{ 15-2GB-1MB, i5-2GB-2MB, i5-2GB-4MB,
i5-4GB-1MB, i5-4GB-2MB, i5-4GB-4MB,
i5-8GB-1MB, i5-8GB-2MB, i5-8GB-4MB,
i7-2GB-1MB, i7-2GB-2MB, i7-2GB-4MB,
i7-4GB-1MB, i7-4GB-2MB, i7-4GB-4MB,
i7-8GB-1MB, i7-8GB-2MB, i7-8GB-4MB }

Application: product rule

how many possible subsets of a set of N elements?
S={Xq, Xg -, Xy }

can map each subset into a sequence of N bits: b, = 1 = x, in subset
{ X4, X, X5 } €= 10011000...0

= for an N-element set, count number of N-bit sequences
[{0,1} x {0,1} x {0,1} x ... x {0,1}|=[{0,1}|r=2n
e.g., S={a b, c}
subsets of S = {{}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

|subsets of S| = 2/5I=23=8




Combining rules

many problems involve a combination of counting methods
SumRule: ifS,, ..., S, are disjoint sets, then |S; U ... US| = |S,|+...#[S,|

Division Rule: if f: A > Bis k-to-1, then |A| =k * |B].

suppose a computer system requires 6-8 character passwords, consisting
of letters & digits that must start with a letter

= apha={a,b,...,z,A/B, ..., Z}
= anum=alphaU{0,1,2,...,9}

passwords = (6-char passwords) U (7-char passwords) U (8-char passwords)
= (alpha % anumd) U (alpha x anumé) U (alpha X anum’)

| passwords | =] (alpha X anum®) U (alpha x anum®) U (alpha x anum’) |
=|alpha x anum?®|+|alpha X anumé |+ |alpha X anum’| [Sum Rule]
= |alpha[*lanum|° + |alpha*lanum|® + |alpha[*lanum|” [Product Rule]
= 52*625 + 52*626 + 52*627
= 186,125,210,680,448

Generalized product rule

the product rule assumes that the choices are independent

= pick-4 lotto: 4 bins of balls numbered 0-9.
[{0..9} x {0..9} x {0..9} x {0..9}]|=[{0..9}}* = 10* = 10,000

what about a lottery where balls numbered 1-42 are in a bin & draw 47

Generalized Product Rule: Let S be a set of length-k sequences. If there are:
* n, possible first entries,
* n, possible second entries for each first entry,
* n, possible third entries for each combination of first and second entries, etc.
then:
[S]|=n*n,*ny*...*ny

= | 4-ball draws | = 42 * 41 * 40 * 39 = 2,686,320




Counting subsets

the lottery problem is an example of a more generic problem
= how many k-element subsets of an n-element set are there?

= e.g., how many 4-ball lottery numbers are there (assuming 42 balls)?
= e.g., how many 5-card poker hands are there (assuming 52 cards)?
= e.g., how many 3-topping pizzas are there (assuming 10 toppings)?

n
"n choose k" is such a common expression that it has its own notation: ( K

= can map any permutation of n items into a k-element subset by simply taking the
first k elements of in the permutation

= this is not a 1-1 mapping though, since any arrangement of the k-element prefix
and (n-k)-element suffix yields the same subset

= Division rule - |perms| = |perms of prefix| * [perms of suffix| * (;]

N n n!
k] = kl(n-k)!

|

Pascal's identity

"n choose k" can also be defined using recursion
= select a "special" element of the list (e.g., lottery ball #1)

|subsets| = |subsets that include special element]| + |subsets that don't|

n n-1 n-1 e.g., choose 4 out of 42 lottery balls =
(k) = (k 1) + ( K ) choose 3 out of 41 balls (includes 1) +
. choose 4 out of 41 balls (doesn't include 1)

choosel(n, k):
math.factorial(n)//(math.factorial(k)*math.factorial(n-k))

choose2(n, k):
k == n:
1
k == 1:
n

choose2(n-1, k-1) + choose2(n-1, k)




Application: hand counting

how many different 4-of-a-kind hands are there?

= can define a bijection with the sequence:
rank of matching cards, rank of 5t card, suit of 5" card

Generalized Product Rule:
|sequences| = |rank of matching|*|rank of 5%|*|suit of 51|
=13*12*4
=624
= there are "52 choose 5" possible hands = 52!/(47!5!) = 2,598,960

= odds of drawing 4-of-a-kind are 624/2598960 = 1/4165

Application: hand counting

how many different full house hands are there?

= can define a bijection with the sequence:
rank of 3, suits of 3, rank of 2, suits of 2

= Generalized Product Rule:

|sequences| = |rank of 3|*|suits of 3|*|rank of 2|*|suits of 2|
=13 * (4 choose 3) * 12 * (4 choose 2)
=13 *41/(311) * 12 * 41/(212)
=13*24/6 * 12 * 24/4
= 3,744

= odds of drawing a full house are 3744/2598960 ~ 1/694




Application: hand counting

how many different 2-pair hands are there?

= can define a mapping with the sequence:
rank of 15t pair, suits of 15t pair, rank of 2n pair, suits of 2" pair,
rank of extra, suit of extra

= Generalized Product Rule:
|sequences| =13 (4 choose 2) * 12 * (4 choose 2) * 11 * 4
=13 *41/(2121) * 12 * 41/(212!) * 11 * 4
=13*24/4* 12 24/4* 11 * 4
= 247,104

= odds of drawing 2-pairs are 247104/2598960 = 1/11

WRONG: the mapping is not a bijection
3CSQHSAD and QHS3CSAD map to the same hand
2-to-1 mapping, so 247104/2 = 123,552 hands (= 1/22)

Set overlap

recall the Sum Rule:if S, ..., S, are disjoint sets, then |S; U ... U S| = [S;|+...+]S,|
» but what if the sets are not disjoint?

suppose JM&C has 50 CSI majors and 30 GDE majors
= that doesn't necessarily mean 80 distinct majors
total majors = CSI majors + GDE majors — (dual majors)

Inclusion/Exclusion Rule:
[S{US,U...US,|= the sum of the sizes of the individual sets -
the sizes of all two-way intersections +
the sizes of all three-way intersections —
the sizes of all four-way intersections +




Pigeonhole principle
suppose your sock drawer contains black, brown, and white socks
= if you grab socks at random, how many must you grab to ensure a match?
Pigeonhole Principle: if [X| > [Y], then for every total function f: X = Y, there exist

two different elements of X that are mapped to the same element of Y

= need to grab 4 socks to make |socks| > |colors|

= how many people must be in a room to ensure at least one shared birthday?
(only requires 57 for a 99% probability)

Direct proofs
the simplest kind of proof is a logical explanation or demonstration
CLAIM: The best case for sequential search is O(1)

PROOF: Suppose the item to be found is in the firstindex. Then sequential search will find
it on the first check. You can't find something in fewer than one check.

CLAIM: you can add to either end of a doubly-linked list in O(1) time.

PROOF:
* add at front front = new DNode (3, null, front); > 0(1)
if (front.getNext () == null) { > 0(1)
back = front; 2> o(1)
}
else {
front.getNext () .setPrevious (front) ; > 0(1)
}
¢ add at back back = new DNode (3, back, null); > 0(1)
if (back.getPrevious() == null) { 2> 0(1)
front = back > 0(1)

}
else {

back.getPrevious () .setNext (back) ; - 0(1)
}




Proof by contradiction

to disprove something, all you need to do is find a counter-example
CLAIM: every set has an even number of elements.
DISPROOF: {4}

however, you can't prove a general claim just by showing examples
CLAIM: there is no largest integer

to prove a claim by contradiction
= assume the opposite and find a logical contradiction

CLAIM: there is no largest integer

PROOF: Assume there exists a largest integer. Call that largest integer N.
But N+1 is also an integer (since the sum of two integers is an integer), and N+1 > N.
This contradicts our assumption, so the original claim must be true.

Proof by induction

inductive proofs are closely related to recursion
= prove a parameterized claim by building up from a base case

To prove some property is true for all N = C (for some constant C):
BASE CASE: Show that the property is true for C.
HYPOTHESIS: Assume the property is true foralln <N
INDUCTIVE STEP: Show that that the property is true for N.

CLAIM: 142+...+N = N(N+1)/2
BASE CASE:N=1.1=1(1+1)/2 v/
HYPOTHESIS: Assume the relation holds for alln <N, e.g., 1+2+...+(N-1) = (N-1)N/2.
INDUCTIVE STEP: Then 1+2+...+N  =[1+2+.. . +(N-1)]+N  regrouping

= (N-1)N/2 + N by hypothesis
= (N2=N)/2 + 2N/2 simplification
= (N2+N)/2 simplification

N(N+1)2 v




Proof by induction

FUNDAMENTAL THEOREM OF ARITHMETIC: every integer N > 1 is either
prime or the product of primes

BASE CASE: N=2. 2 is prime.
HYPOTHESIS: Assume true for n < N.

INDUCTIVE STEP?
Either N is a prime number or not.
If N is prime, the assertion is proven.
If not, then N = x,*x,*...*x,, where each x; < N (by the definition of non-prime).
By the induction hypotheS|s
each x is either prime or a product of primes x= p;;*..."p;
Thus, N = X;"™". .. "X = PPy ¥ .. " g™ " Py is @ product of primes.

Exercise: prove by induction

A pyramid of blocks with height H consists of H(H+1)/2 blocks.

: & B

BASE CASE:
HYPOTHESIS:

INDUCTIVE STEP:

20

10



