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CSC 321: Data Structures

Fall 2018

Balanced and other trees
§ balanced BSTs: AVL trees, red-black trees

TreeSet & TreeMap implementations
§ heaps

priority queue implementation
heap sort
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Balancing trees

recall: on average, N random insertions into a BST yields O(log N) height
§ however, degenerative cases exist (e.g., if data is close to ordered)

we can ensure logarithmic depth by maintaining balance
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maintaining full balance can be costly
§ however, full balance is not needed to ensure O(log N) operations
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AVL trees

an AVL tree is a binary search tree where
§ for every node, the heights of the left and 

right subtrees differ by at most 1

§ first self-balancing binary search tree variant
§ named after Adelson-Velskii & Landis (1962)

AVL tree
not an AVL tree – WHY?

4

AVL trees and balance

the AVL property is weaker than full balance, but sufficient to ensure 
logarithmic height
§ height of AVL tree with N nodes < 2 log(N+2)  à searching is O(log N)
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Inserting/removing from AVL tree

when you insert or remove from an AVL tree, imbalances can occur

§ if an imbalance occurs, must rotate subtrees to retain the AVL property

§ see www.cs.usfca.edu/~galles/visualization/AVLtree.html
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AVL tree rotations

worst case, inserting/removing requires traversing the path back to the root 
and rotating at each level
§ each rotation is a constant amount of work  è inserting/removing is O(log N)

there are two possible types of rotations, depending upon the imbalance 
caused by the insertion/removal

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html
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Red-black trees
a red-black tree is a binary search tree in which each node is assigned a 

color (either red or black) such that
1. the root is black
2. a red node never has a red child
3. every path from root to leaf has the same number of black nodes

§ add & remove preserve these properties (complex, but still O(log N))
§ red-black properties ensure that tree height < 2 log(N+1)  à O(log N) search

see a demo at www.cs.usfca.edu/~galles/visualization/RedBlack.html 
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Java Collection classes

recall the Java Collection Framework
§ defined using interfaces abstract classes, and inheritance

in some languages, a Map is 
referred to as an "associative list" 
or "dictionary"

array doubly-
linked list

red-black 
tree

red-black 
tree

hash table hash table

http://www.cs.usfca.edu/~galles/visualization/RedBlack.html
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Sets
java.util.Set interface: an unordered collection of items, with no duplicates

public interface Set<E> extends Collection<E> {
boolean add(E o); // adds o to this Set
boolean remove(Object o); // removes o from this Set
boolean contains(Object o); // returns true if o in this Set
boolean isEmpty(); // returns true if empty Set
int size(); // returns number of elements
void clear(); // removes all elements
Iterator<E> iterator(); // returns iterator
. . .

}

implemented by TreeSet and TreeMap classes
TreeSet  implementation

ü implemented using a red-black tree; items stored in the nodes (must be Comparable)
ü provides O(log N) add, remove, and contains (guaranteed)
ü iteration over a TreeSet accesses the items in order (based on compareTo)

HashSet implementation
ü HashSet utlizes a hash table data structure  LATER
ü HashSet provides O(1) add, remove, and contains (on average, but can degrade)
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Dictionary revisited

note: our Dictionary 
class could have 
been implemented 
using a Set
§ Strings are 

Comparable, so 
could use either 
implementation

§ TreeSet has the 
advantage that 
iterating over the Set 
elements gives them 
in order (here, 
alphabetical order)

import java.util.Set;
import java.util.TreeSet;
import java.util.Scanner;
import java.io.File;

public class Dictionary {
private Set<String> words;

public Dictionary() {
this.words = new TreeSet<String>();

}

public Dictionary(String filename) {
this();
try {

Scanner infile = new Scanner(new File(filename));
while (infile.hasNext()) {

String nextWord = infile.next();
this.add(nextWord);

}
}
catch (java.io.FileNotFoundException e) {

System.out.println("FILE NOT FOUND");
}

}

public void add(String newWord) {
this.words.add(newWord.toLowerCase());

}

public void remove(String oldWord) {
this.words.remove(oldWord.toLowerCase());

}

public boolean contains(String testWord) {
return this.words.contains(testWord.toLowerCase());

}
}
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Maps
java.util.Map interface: a collection of key à value mappings

public interface Map<K, V> {
boolean put(K key, V value); // adds keyàvalue to Map
V remove(Object key); // removes keyà? entry from Map
V get(Object key); // returns true if o in this Set
boolean containsKey(Object key);     // returns true if key is stored
boolean containsValue(Object value); // returns true if value is stored
boolean isEmpty(); // returns true if empty Set
int size(); // returns number of elements
void clear(); // removes all elements
Set<K> keySet(); // returns set of all keys
. . .

}

implemented by TreeMap and HashMap classes
TreeMap implementation

ü utilizes a red-black tree to store key/value pairs; ordered by the (Comparable) keys
ü provides O(log N) put, get, and containsKey (guaranteed)
ü keySet() returns a TreeSet, so iteration over the keySet accesses the keys in order

HashMap implementation
ü HashSet utlizes a HashSet to store key/value pairs LATER
ü HashSet provides O(1) put, get, and containsKey (on average, but can degrade)
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Word 
frequencies

a variant of Dictionary 
is WordFreq
§ stores words & their 

frequencies (number of 
times they occur) 

§ can represent the 
wordàcounter pairs in 
a Map

§ again, could utilize 
either Map 
implementation

§ since TreeMap is used, 
showAll displays words 
+ counts in 
alphabetical order

import java.util.Map;
import java.util.TreeMap;
import java.util.Scanner;
import java.io.File;

public class WordFreq {
private Map<String, Integer> words;

public WordFreq() {
words = new TreeMap<String, Integer>();

}

public WordFreq(String filename) {
this();
try {

Scanner infile = new Scanner(new File(filename));
while (infile.hasNext()) {

String nextWord = infile.next();
this.add(nextWord);

}
}
catch (java.io.FileNotFoundException e) {

System.out.println("FILE NOT FOUND");
}

}

public void add(String newWord) {
String cleanWord = newWord.toLowerCase();
if (words.containsKey(cleanWord)) {

words.put(cleanWord, words.get(cleanWord)+1);
}
else {

words.put(cleanWord, 1);
}

}

public void showAll() {
for (String str : words.keySet()) {

System.out.println(str + ": " + words.get(str));
}

}
}
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Other tree structures

a heap is a common tree structure that:
§ can efficiently implement a priority queue (a list of items that are accessed based on 

some ranking or priority as opposed to FIFO/LIFO)
§ can also be used to implement another O(N log N) sort
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motivation: many real-world applications involve optimal scheduling
§ choosing the next in line at the deli
§ prioritizing a list of chores
§ balancing transmission of multiple signals over limited bandwidth
§ selecting a job from a printer queue
§ multiprogramming/multitasking

all these applications require
§ storing a collection of prioritizable items, and
§ selecting and/or removing the highest priority item
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Priority queue

priority queue is the ADT that encapsulates these 3 operations:
ü add item (with a given priority)
ü find highest priority item
ü remove highest priority item

e.g., assume printer jobs are given a priority 1-5, with 1 being the most urgent

a priority queue can be implemented in a variety of ways

§ unsorted list
efficiency of add?  efficiency of find?  efficiency of remove?

§ sorted list (sorted by priority)
efficiency of add?  efficiency of find?  efficiency of remove?

§ others?

job1
3

job 2
4

job 3
1

job 4
4

job 5
2

job4
4

job 2
4

job 1
3

job 5
2

job 3
1
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java.util.PriorityQueue

Java provides a PriorityQueue class

public class PriorityQueue<E extends Comparable<? super E>> {
/** Constructs an empty priority queue 
*/

public PriorityQueue<E>() { … }

/** Adds an item to the priority queue (ordered based on compareTo)
*    @param newItem the item to be added
*    @return true if the items was added successfully
*/

public boolean add(E newItem) { … }

/** Accesses the smallest item from the priority queue (based on compareTo)
*    @return the smallest item
*/

public E peek() { … }

/** Accesses and removes the smallest item (based on compareTo)
*    @return the smallest item 
*/

public E remove() { … }

public int size() { … }
public void clear() { … }
. . .

}

the underlying data structure is 
a special kind of binary tree 
called a heap
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Heaps
a complete tree is a tree in which 

§ all leaves are on the same level or else on 2 adjacent levels
§ all leaves at the lowest level are as far left as possible

a heap is complete binary tree in which 
§ for every node, the value stored is £ the values stored in both subtrees

(technically, this is a min-heap -- can also define a max-heap where the value is ³ )

since complete, a heap has minimal height = ëlog2 Nû+1
§ can insert in O(height) = O(log N), but searching is O(N)

§ not good for general storage, but perfect for implementing priority queues
can access min value in O(1), remove min value in O(height) = O(log N)
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Inserting into a heap

note: insertion maintains completeness and the heap property
§ worst case, if add smallest value, will have to swap all the way up to the root
§ but only nodes on the path are swapped à O(height) = O(log N) swaps

to insert into a heap
§ place new item in next open leaf position
§ if new value is smaller than parent, then swap nodes
§ continue up toward the root, swapping with parent, until smaller parent found

see www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html 

add 
30
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Removing from a heap

note: removing root maintains completeness and the heap property
§ worst case, if last value is largest, will have to swap all the way down to leaf
§ but only nodes on the path are swapped à O(height) = O(log N) swaps

to remove the min value (root) of a heap 
§ replace root with last node on bottom level
§ if new root value is greater than either child, swap with smaller child
§ continue down toward the leaves, swapping with smaller child, until smallest

see www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html
http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html


10

19

Implementing a heap

a heap provides for O(1) find min, O(log N) insertion and min removal
§ also has a simple, List-based implementation
§ since there are no holes in a heap, can store nodes in an ArrayList, level-by-level

30 34 60 36 71 66 71 83 40 94

§ root is at index 0

§ last leaf is at index size()-1

§ for a node at index i, children 
are at  2*i+1 and  2*i+2

§ to add at next available leaf, 
simply add at end 
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MinHeap class
import java.util.ArrayList;

public class MinHeap<E extends Comparable<? super E>> {
private ArrayList<E> values;

public MinHeap() {
this.values = new ArrayList<E>();

}

public E minValue() {
if (this.values.size() == 0) {

throw new java.util.NoSuchElementException();
}
return this.values.get(0);

}

public void add(E newValue) {
this.values.add(newValue);
int pos = this.values.size()-1;

while (pos > 0) {
if (newValue.compareTo(this.values.get((pos-1)/2)) < 0) {

this.values.set(pos, this.values.get((pos-1)/2));
pos = (pos-1)/2;

}
else {

break;
}

}
this.values.set(pos, newValue);

}

. . .

we can define 
our own simple 
min-heap 
implementation 
•minValue 

returns the 
value at index 0

•add places the 
new value at the 
next available 
leaf (i.e., end of 
list), then moves 
upward until in 
position
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MinHeap class (cont.)

. . .

public void remove() {
E newValue = this.values.remove(this.values.size()-1);
int pos = 0;

if (this.values.size() > 0) {
while (2*pos+1 < this.values.size()) {

int minChild = 2*pos+1;
if (2*pos+2 < this.values.size() &&

this.values.get(2*pos+2).compareTo(this.values.get(2*pos+1)) < 0) {
minChild = 2*pos+2;

}

if (newValue.compareTo(this.values.get(minChild)) > 0) {
this.values.set(pos, this.values.get(minChild));
pos = minChild;

}
else {

break;
}

}
this.values.set(pos, newValue);

} 
}

•remove removes the last leaf 
(i.e., last index), copies its value 
to the root, and then moves 
downward until in position
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Heap sort
the priority queue nature of heaps suggests an efficient sorting algorithm

§ start with the ArrayList to be sorted
§ construct a heap out of the elements 
§ repeatedly, remove min element and put back into the ArrayList

§ N items in list, each insertion can 
require O(log N) swaps to 
reheapify
àconstruct heap in O(N log N) 

§ N items in heap, each removal 
can require O(log N) swap to 
reheapify
àcopy back in O(N log N)

public static <E extends Comparable<? super E>> 
void heapSort(ArrayList<E> items) {

MinHeap<E> itemHeap = new MyMinHeap<E>();

for (int i = 0; i < items.size(); i++) {
itemHeap.add(items.get(i));

}

for (int i = 0; i < items.size(); i++) {
items.set(i, itemHeap.minValue());
itemHeap.remove();

}
}

thus, overall efficiency is O(N log N), which is as good as it gets!
§ can also implement so that the sorting is done in place, requires no extra storage
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Red-black sort

heap sort suggests an additional O(N log N) sort
§ start with the ArrayList to be sorted
§ construct a balanced-ish binary search tree out of the elements
§ iterate over the binary search tree and put back into the ArrayList

§ since TreeSet stores values in a 
red-black tree, each add is 
O(log N)
àconstruct tree in O(N log N) 

§ using an iterator, can traverse 
the items in order
àcopy back in O(N)

public static <E extends Comparable<? super E>> 
void redBlackSort(ArrayList<E> items) {

TreeSet<Integer> itemSet = new TreeSet<Integer>();
for (int i = 0; i < items.size(); i++) {

itemSet.add(items.get(i));
}

int i = 0;
for (int val : itemSet) {

items.set(i, val);
i++;

}
}

thus, overall efficiency is O(N log N), which is as good as it gets!
§ but it does require extra storage for the tree


