CSC 321: Data Structures

Fall 2018

Balanced and other trees
= balanced BSTs: AVL trees, red-black trees
TreeSet & TreeMap implementations
= heaps
priority queue implementation
heap sort

Balancing trees

recall: on average, N random insertions into a BST yields O(log N) height
= however, degenerative cases exist (e.g., if data is close to ordered)

we can ensure logarithmic depth by maintaining balance

(=) (=) (=)
ADD 6 BALANCE
ONO () @ () @

© ® © O®

maintaining full balance can be costly
= however, full balance is not needed to ensure O(log N) operations

AVL trees

an AVL tree is a binary search tree where
= for every node, the heights of the left and f
right subtrees differ by at most 1 b1 h-2
= first self-balancing binary search tree variant "
= named after Adelson-Velskii & Landis (1962)
(50) (50)
€D (20)) (20)

@ @@

AVL tree

not an AVL tree - WHY?

AVL trees and balance

the AVL property is weaker than full balance, but sufficient to ensure
logarithmic height

= height of AVL tree with N nodes < 2 log(N+2) -> searching is O(log N)

PR S T SR S S SN SN NN SRR SR
I R I I I S IR SR S IR AR IR SR SR RR SR SR SRR SR SR
| oL Vo o o
‘- ‘ . teg e I - . e IR R EE R
AT Tt At AR TR A A A R
. PR . PR . “'T ...,...-..‘.
|
|

. s

Inserting/removing from AVL tree

when you insert or remove from an AVL tree, imbalances can occur

(50 (50
B | "’” &
(o

o) &

= if an imbalance occurs, must rotate subtrees to retain the AVL property

€ T,
& ®@ &

= see

AVL tree rotations

there are two possible types of rotations, depending upon the imbalance
caused by the insertion/removal

double
rotation

worst case, inserting/removing requires traversing the path back to the root
and rotating at each level
= each rotation is a constant amount of work =» inserting/removing is O(log N)

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Red-black trees

a red-black tree is a binary search tree in which each node is assigned a
color (either red or black) such that

1. the root is black
2. ared node never has a red child
3. every path from root to leaf has the same number of black nodes

= add & remove preserve these properties (complex, but still O(log N))
= red-black properties ensure that tree height < 2 log(N+1) - O(log N) search

see a demo at www.cs.usfca.edu/~galles/visualization/RedBlack.html

Java Collection classes

recall the Java Collection Framework
= defined using interfaces abstract classes, and inheritance

Collection

in some languages, a Map is
referred to as an "associative list"
or "dictionary"

Graph
ArrayList LinkedList [OrdcredScl OrderedMap [
— —— DiGraph
array doubly- |
linked list
TreeSet HashSet TreeMap HashMap

red-black hash table red-black hash table
tree tree

http://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Sets

java.util.Set interface: an unordered collection of items, with no duplicates

public interface Set<E> extends Collection<E> ({

boolean add(E o);
boolean remove (Object o);

boolean contains (Object o) ;

boolean isEmpty();

int size();

void clear();
Iterator<E> iterator();

// adds o to this Set

// removes o from this Set

// returns true if o in this Set
// returns true if empty Set

// returns number of elements

// removes all elements

// returns iterator

implemented by TreeSet and TreeMap classes

TreeSet implementation

v' implemented using a red-black tree; items stored in the nodes (must be Comparable)

v' provides O(log N) add,

remove, and contains (guaranteed)

v’ iteration over a TreeSet accesses the items in order (based on compareTo)

HashSet implementation

v HashSet utlizes a hash table data structure

LATER

v HashSet provides O(1) add, remove, and contains (on average, but can degrade)

Dictionary revisited

note: our Dictionary
class could have

been implemented

using a Set

= Strings are
Comparable, so
could use either
implementation

TreeSet has the
advantage that
iterating over the Set
elements gives them
in order (here,
alphabetical order)

import
import
import
import

util.Set;
util.TreeSet;
util.Scanner;
io.File;

java.
java.
java.
java.

public class Dictionary {

private Set<String> words;

public Dictionary () {
this.words = new TreeSet<String>();

}

public Dictionary(String filename) {
this();
try {

Scanner infile = new Scanner (new File(filename));

while (infile.hasNext()) {
String nextWord = infile.next();
this.add (nextWord) ;
}
}
catch (java.io.FileNotFoundException e) {
System.out.println ("FILE NOT FOUND");
}
}

public void add(String newWord) {
this.words.add (newWord.toLowerCase ()) ;

}

public void remove (String oldWord) {
this.words.remove (oldWord.toLowerCase()) ;

}

public boolean contains (String testWord) ({
return this.words.contains (testWord.toLowerCase());

}

Maps

java.util.Map interface: a collection of key = value mappings

public interface Map<K,

boolean put (K key,

V get (Object key);

boolean containsKey (Object key);

v> |
V value);
V remove (Object key);

// adds key>value to Map

// removes key=>? entry from Map

// returns true if o in this Set

// returns true if key is stored

boolean containsValue (Object value); // returns true if value is stored

boolean isEmpty();
int size();

void clear();
Set<K> keySet();

}

// returns true if empty Set
// returns number of elements
// removes all elements

// returns set of all keys

implemented by TreeMap and HashMap classes

TreeMap implementation

v’ utilizes a red-black tree to store key/value pairs; ordered by the (Comparable) keys
v' provides O(log N) put, get, and containsKey (guaranteed)
v" keySet() returns a TreeSet, so iteration over the keySet accesses the keys in order

HashMap implementation
v HashSet utlizes a HashSet to store key/value pairs

LATER

v HashSet provides O(1) put, get, and containsKey (on average, but can degrade) 44

Word
frequencies

a variant of Dictionary
is WordFreq

= stores words & their
frequencies (number of
times they occur)

= can represent the
word->counter pairs in
a Map

= again, could utilize
either Map
implementation

= since TreeMap is used,
showAll displays words
+counts in
alphabetical order

import java.util.Map;
import java.util.TreeMap;
import java.util.Scanner;
import java.io.File;

public class WordFreq {
private Map<String, Integer> words;

public WordFreq() {
words = new TreeMap<String, Integer>();

}

public WordFreq(String filename) {

this();

try {
Scanner infile = new Scanner (new File(filename));
while (infile.hasNext()) {

String nextWord = infile.next();
this.add (nextWord) ;
}
}
catch (java.io.FileNotFoundException e) {
System.out.println ("FILE NOT FOUND");
}
}

public void add(String newWord) {
String cleanWord = newWord.toLowerCase();
if (words.containsKey(cleanWord)) {
words.put (cleanWord, words.get (cleanWord)+1);
}
else {
words.put (cleanWord, 1);
}
}

public void showAll () {
for (String str : words.keySet()) {
System.out.println(str + ": " + words.get (str));

}

Other tree structures

a heap is a common tree structure that:

= can efficiently implement a priority queue (a list of items that are accessed based on

some ranking or priority as opposed to FIFO/LIFO)
= can also be used to implement another O(N log N) sort

motivation: many real-world applications involve optimal scheduling
= choosing the next in line at the deli

prioritizing a list of chores

balancing transmission of multiple signals over limited bandwidth

selecting a job from a printer queue

multiprogramming/multitasking

all these applications require
= storing a collection of prioritizable items, and
= selecting and/or removing the highest priority item

Priority queue

priority queue is the ADT that encapsulates these 3 operations:
v add item (with a given priority)
v’ find highest priority item
v remove highest priority item

e.g., assume printer jobs are given a priority 1-5, with 1 being the most urgent

a priority queue can be implemented in a variety of ways

job1 L job2 | job3 | job4 | job5
= unsorted list L L B N
efficiency of add? efficiency of find? efficiency of remove?

job4 | job2 | job1 | job5 | job3
= sorted list (sorted by priority) L2 % 1 °] 2 | °
efficiency of add? efficiency of find? efficiency of remove?

= others?

Java.util.PriorityQueue

Java provides a priorityQueue class

public class PriorityQueue<E extends Comparable<? super E>> {
/** Constructs an empty priority queue
*/

public PriorityQueue<E>() { .. }

/** Adds an item to the priority queue (ordered based on compareTo)

* @param newItem the item to be added
* @return true if the items was added successfully
*/

public boolean add(E newItem) { ..}

/** Accesses the smallest item from the priority queue (based on compareTo)
* @return the smallest item
*/

public E peek() { ..}

/** Accesses and removes the smallest item (based on compareTo)

* @return the smallest item
*/
public E remove() { .. } . .
public int size() { .) the underlying data structure is
public void elear() () a special kind of binary tree
! called a heap
15
Heaps
a complete tree is a tree in which
= all leaves are on the same level or else on 2 adjacent levels
= all leaves at the lowest level are as far left as possible
a heap is complete binary tree in which
= for every node, the value stored is < the values stored in both subtrees
(technically, this is a min-heap -- can also define a max-heap where the value is >)
/////////// \\\\\\\\\\\ //////,/'/’ \\\\\\\\\\\
/ \ / \ 15'// \\\ 40 sn/ l \\ 14
n “ n VRN VRN /N /N
83/ \ / as 43 56 89 6 56 77 26

since complete, a heap has minimal height = | log, N_J+1
= caninsertin O(height) = O(log N), but searching is O(N)

= not good for general storage, but perfect for implementing priority queues
can access min value in O(1), remove min value in O(height) = O(log N)

Inserting into a heap

to insert into a heap
= place new item in next open leaf position
= if new value is smaller than parent, then swap nodes
= continue up toward the root, swapping with parent, until smaller parent found

/u\“ a:;iod 30/ 28\60
220 N Ze N — P S
/ \ / SN N

note: insertion maintains completeness and the heap property
= worst case, if add smallest value, will have to swap all the way up to the root
= but only nodes on the path are swapped - O(height) = O(log N) swaps

Removing from a heap

to remove the min value (root) of a heap
= replace root with last node on bottom level
= if new root value is greater than either child, swap with smaller child
= continue down toward the leaves, swapping with smaller child, until smallest

see

36 34 66 71

aNEVAN /

83 40 94 7 83 I 9

0/”\60 u/‘“\w
ST %
N/

note: removing root maintains completeness and the heap property
= worst case, if last value is largest, will have to swap all the way down to leaf
= but only nodes on the path are swapped - O(height) = O(log N) swaps

\71

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html
http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

Implementing a heap

a heap provides for O(1) find min, O(log N) insertion and min removal
= also has a simple, List-based implementation
= since there are no holes in a heap, can store nodes in an ArrayList, level-by-level

N

71

/

34/30\60
A
VAN

[30]34]60[36]71]66]71]83]40]04]

= rootis at index 0

last leaf is at index size () -1

= for a node at index i, children
areat 2*i+1 and 2*i+2

= to add at next available leaf,

simply add at end

MinHeap class

import java.util.ArrayList;

public class MinHeap<E extends Comparable<? super E>>
private ArrayList<E> values;

public MinHeap() {
this.values = new ArrayList<E>();

public E minValue() {
if (this.values.size() == 0) {

}

return this.values.get (0);

public void add(E newValue) {
this.values.add (newValue) ;
int pos = this.values.size()-1;

while (pos > 0) {

}
}

this.values.set (pos, newValue);

throw new java.util.NoSuchElementException();

if (newValue.compareTo (this.values.get ((pos-1)/2)) < 0) {
this.values.set (pos, this.values.get ((pos-1)/2));
pos = (pos-1)/2;

}

else {
break;

we can define
our own simple
min-heap
implementation
eminValue

returns the
value at index 0

{

« add places the
new value at the
next available
leaf (i.e., end of
list), then moves
upward until in
position

20

10

MinHeap Class (cont.)

public void remove () {
int pos = 0;

if (this.values.size() > 0) {
while (2*pos+l < this.values.size())
int minChild = 2*pos+l;
if (2*pos+2 < this.values.size()

minChild = 2*pos+2;
}

pos = minChild;
}
else {
break;
}
}

this.values.set (pos, newValue);

E newValue = this.values.remove (this.values.size()-1);

this.values.get (2*pos+2) .compareTo (this.values.get (2*pos+1l)) < 0) {

if (newValue.compareTo (this.values.get (minChild)) > 0) {
this.values.set (pos, this.values.get (minChild));

{

&&

« remove removes the last leaf
(i-e., last index), copies its value
to the root, and then moves

downward until in position =

21

Heap sort

the priority queue nature of heaps suggests an efficient sorting algorithm

= start with the ArrayList to be sorted
= construct a heap out of the elements

= repeatedly, remove min element and put back into the ArrayList

public static <E extends Comparable<? super E>>
void heapSort (ArrayList<E> items) {

MinHeap<E> itemHeap = new MyMinHeap<E>();

for (int i = 0; 1 < items.size(); i++) {
itemHeap.add(items.get (i));

for (int i = 0; i < items.size(); i++) {
items.set (i, itemHeap.minValue());
itemHeap.remove () ;

= N items in list, each insertion can
require O(log N) swaps to
reheapify
->construct heap in O(N log N)

= N items in heaP, each removal
can require O(log N) swap to
reheapify

->copy back in O(N log N)

thus, overall efficiency is O(N log N), which is as good as it gets!
= can also implement so that the sorting is done in place, requires no extra storage

22

11

Red-black sort

heap sort suggests an additional O(N log N) sort

= start with the ArrayList to be sorted

= construct a balanced-ish binary search tree out of the elements
= iterate over the binary search tree and put back into the ArrayList

public static <E extends Comparable<? super E>>
void redBlackSort (ArrayList<E> items) {
TreeSet<Integer> itemSet = new TreeSet<Integer>();
for (int i = 0; 1 < items.size(); i++) {
itemSet.add(items.get (1)) ;
}

int 1 = 0;

for (int val : itemSet) {
items.set (i, val);
i++;

}

= since TreeSet stores values in a
red-black tree, each add is
O(log N)

—>construct tree in O(N log N)

= using an iterator, can traverse
the items in order

—>copy back in O(N)

thus, overall efficiency is O(N log N), which is as good as it gets!

= but it does require extra storage for the tree

23

12

