
1

1

CSC 321: Data Structures

Fall 2018

Balanced and other trees
§ balanced BSTs: AVL trees, red-black trees

TreeSet & TreeMap implementations
§ heaps

priority queue implementation
heap sort

2

Balancing trees

recall: on average, N random insertions into a BST yields O(log N) height
§ however, degenerative cases exist (e.g., if data is close to ordered)

we can ensure logarithmic depth by maintaining balance

12

8 16

4 10

ADD 6

12

8 16

4 10

6

BALANCE

10

6 16

4 8 12

maintaining full balance can be costly
§ however, full balance is not needed to ensure O(log N) operations

2

3

AVL trees

an AVL tree is a binary search tree where
§ for every node, the heights of the left and

right subtrees differ by at most 1

§ first self-balancing binary search tree variant
§ named after Adelson-Velskii & Landis (1962)

AVL tree
not an AVL tree – WHY?

4

AVL trees and balance

the AVL property is weaker than full balance, but sufficient to ensure
logarithmic height
§ height of AVL tree with N nodes < 2 log(N+2) à searching is O(log N)

3

5

Inserting/removing from AVL tree

when you insert or remove from an AVL tree, imbalances can occur

§ if an imbalance occurs, must rotate subtrees to retain the AVL property

§ see www.cs.usfca.edu/~galles/visualization/AVLtree.html

6

AVL tree rotations

worst case, inserting/removing requires traversing the path back to the root
and rotating at each level
§ each rotation is a constant amount of work è inserting/removing is O(log N)

there are two possible types of rotations, depending upon the imbalance
caused by the insertion/removal

http://www.cs.usfca.edu/~galles/visualization/AVLtree.html

4

7

Red-black trees
a red-black tree is a binary search tree in which each node is assigned a

color (either red or black) such that
1. the root is black
2. a red node never has a red child
3. every path from root to leaf has the same number of black nodes

§ add & remove preserve these properties (complex, but still O(log N))
§ red-black properties ensure that tree height < 2 log(N+1) à O(log N) search

see a demo at www.cs.usfca.edu/~galles/visualization/RedBlack.html

8

Java Collection classes

recall the Java Collection Framework
§ defined using interfaces abstract classes, and inheritance

in some languages, a Map is
referred to as an "associative list"
or "dictionary"

array doubly-
linked list

red-black
tree

red-black
tree

hash table hash table

http://www.cs.usfca.edu/~galles/visualization/RedBlack.html

5

9

Sets
java.util.Set interface: an unordered collection of items, with no duplicates

public interface Set<E> extends Collection<E> {
boolean add(E o); // adds o to this Set
boolean remove(Object o); // removes o from this Set
boolean contains(Object o); // returns true if o in this Set
boolean isEmpty(); // returns true if empty Set
int size(); // returns number of elements
void clear(); // removes all elements
Iterator<E> iterator(); // returns iterator
. . .

}

implemented by TreeSet and TreeMap classes
TreeSet implementation

ü implemented using a red-black tree; items stored in the nodes (must be Comparable)
ü provides O(log N) add, remove, and contains (guaranteed)
ü iteration over a TreeSet accesses the items in order (based on compareTo)

HashSet implementation
ü HashSet utlizes a hash table data structure LATER
ü HashSet provides O(1) add, remove, and contains (on average, but can degrade)

10

Dictionary revisited

note: our Dictionary
class could have
been implemented
using a Set
§ Strings are

Comparable, so
could use either
implementation

§ TreeSet has the
advantage that
iterating over the Set
elements gives them
in order (here,
alphabetical order)

import java.util.Set;
import java.util.TreeSet;
import java.util.Scanner;
import java.io.File;

public class Dictionary {
private Set<String> words;

public Dictionary() {
this.words = new TreeSet<String>();

}

public Dictionary(String filename) {
this();
try {

Scanner infile = new Scanner(new File(filename));
while (infile.hasNext()) {

String nextWord = infile.next();
this.add(nextWord);

}
}
catch (java.io.FileNotFoundException e) {

System.out.println("FILE NOT FOUND");
}

}

public void add(String newWord) {
this.words.add(newWord.toLowerCase());

}

public void remove(String oldWord) {
this.words.remove(oldWord.toLowerCase());

}

public boolean contains(String testWord) {
return this.words.contains(testWord.toLowerCase());

}
}

6

11

Maps
java.util.Map interface: a collection of key à value mappings

public interface Map<K, V> {
boolean put(K key, V value); // adds keyàvalue to Map
V remove(Object key); // removes keyà? entry from Map
V get(Object key); // returns true if o in this Set
boolean containsKey(Object key); // returns true if key is stored
boolean containsValue(Object value); // returns true if value is stored
boolean isEmpty(); // returns true if empty Set
int size(); // returns number of elements
void clear(); // removes all elements
Set<K> keySet(); // returns set of all keys
. . .

}

implemented by TreeMap and HashMap classes
TreeMap implementation

ü utilizes a red-black tree to store key/value pairs; ordered by the (Comparable) keys
ü provides O(log N) put, get, and containsKey (guaranteed)
ü keySet() returns a TreeSet, so iteration over the keySet accesses the keys in order

HashMap implementation
ü HashSet utlizes a HashSet to store key/value pairs LATER
ü HashSet provides O(1) put, get, and containsKey (on average, but can degrade)

12

Word
frequencies

a variant of Dictionary
is WordFreq
§ stores words & their

frequencies (number of
times they occur)

§ can represent the
wordàcounter pairs in
a Map

§ again, could utilize
either Map
implementation

§ since TreeMap is used,
showAll displays words
+ counts in
alphabetical order

import java.util.Map;
import java.util.TreeMap;
import java.util.Scanner;
import java.io.File;

public class WordFreq {
private Map<String, Integer> words;

public WordFreq() {
words = new TreeMap<String, Integer>();

}

public WordFreq(String filename) {
this();
try {

Scanner infile = new Scanner(new File(filename));
while (infile.hasNext()) {

String nextWord = infile.next();
this.add(nextWord);

}
}
catch (java.io.FileNotFoundException e) {

System.out.println("FILE NOT FOUND");
}

}

public void add(String newWord) {
String cleanWord = newWord.toLowerCase();
if (words.containsKey(cleanWord)) {

words.put(cleanWord, words.get(cleanWord)+1);
}
else {

words.put(cleanWord, 1);
}

}

public void showAll() {
for (String str : words.keySet()) {

System.out.println(str + ": " + words.get(str));
}

}
}

7

Other tree structures

a heap is a common tree structure that:
§ can efficiently implement a priority queue (a list of items that are accessed based on

some ranking or priority as opposed to FIFO/LIFO)
§ can also be used to implement another O(N log N) sort

13

motivation: many real-world applications involve optimal scheduling
§ choosing the next in line at the deli
§ prioritizing a list of chores
§ balancing transmission of multiple signals over limited bandwidth
§ selecting a job from a printer queue
§ multiprogramming/multitasking

all these applications require
§ storing a collection of prioritizable items, and
§ selecting and/or removing the highest priority item

14

Priority queue

priority queue is the ADT that encapsulates these 3 operations:
ü add item (with a given priority)
ü find highest priority item
ü remove highest priority item

e.g., assume printer jobs are given a priority 1-5, with 1 being the most urgent

a priority queue can be implemented in a variety of ways

§ unsorted list
efficiency of add? efficiency of find? efficiency of remove?

§ sorted list (sorted by priority)
efficiency of add? efficiency of find? efficiency of remove?

§ others?

job1
3

job 2
4

job 3
1

job 4
4

job 5
2

job4
4

job 2
4

job 1
3

job 5
2

job 3
1

8

15

java.util.PriorityQueue

Java provides a PriorityQueue class

public class PriorityQueue<E extends Comparable<? super E>> {
/** Constructs an empty priority queue
*/

public PriorityQueue<E>() { … }

/** Adds an item to the priority queue (ordered based on compareTo)
* @param newItem the item to be added
* @return true if the items was added successfully
*/

public boolean add(E newItem) { … }

/** Accesses the smallest item from the priority queue (based on compareTo)
* @return the smallest item
*/

public E peek() { … }

/** Accesses and removes the smallest item (based on compareTo)
* @return the smallest item
*/

public E remove() { … }

public int size() { … }
public void clear() { … }
. . .

}

the underlying data structure is
a special kind of binary tree
called a heap

16

Heaps
a complete tree is a tree in which

§ all leaves are on the same level or else on 2 adjacent levels
§ all leaves at the lowest level are as far left as possible

a heap is complete binary tree in which
§ for every node, the value stored is £ the values stored in both subtrees

(technically, this is a min-heap -- can also define a max-heap where the value is ³)

since complete, a heap has minimal height = ëlog2 Nû+1
§ can insert in O(height) = O(log N), but searching is O(N)

§ not good for general storage, but perfect for implementing priority queues
can access min value in O(1), remove min value in O(height) = O(log N)

9

17

Inserting into a heap

note: insertion maintains completeness and the heap property
§ worst case, if add smallest value, will have to swap all the way up to the root
§ but only nodes on the path are swapped à O(height) = O(log N) swaps

to insert into a heap
§ place new item in next open leaf position
§ if new value is smaller than parent, then swap nodes
§ continue up toward the root, swapping with parent, until smaller parent found

see www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

add
30

18

Removing from a heap

note: removing root maintains completeness and the heap property
§ worst case, if last value is largest, will have to swap all the way down to leaf
§ but only nodes on the path are swapped à O(height) = O(log N) swaps

to remove the min value (root) of a heap
§ replace root with last node on bottom level
§ if new root value is greater than either child, swap with smaller child
§ continue down toward the leaves, swapping with smaller child, until smallest

see www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html
http://www.cs.usfca.edu/~galles/JavascriptVisual/Heap.html

10

19

Implementing a heap

a heap provides for O(1) find min, O(log N) insertion and min removal
§ also has a simple, List-based implementation
§ since there are no holes in a heap, can store nodes in an ArrayList, level-by-level

30 34 60 36 71 66 71 83 40 94

§ root is at index 0

§ last leaf is at index size()-1

§ for a node at index i, children
are at 2*i+1 and 2*i+2

§ to add at next available leaf,
simply add at end

20

MinHeap class
import java.util.ArrayList;

public class MinHeap<E extends Comparable<? super E>> {
private ArrayList<E> values;

public MinHeap() {
this.values = new ArrayList<E>();

}

public E minValue() {
if (this.values.size() == 0) {

throw new java.util.NoSuchElementException();
}
return this.values.get(0);

}

public void add(E newValue) {
this.values.add(newValue);
int pos = this.values.size()-1;

while (pos > 0) {
if (newValue.compareTo(this.values.get((pos-1)/2)) < 0) {

this.values.set(pos, this.values.get((pos-1)/2));
pos = (pos-1)/2;

}
else {

break;
}

}
this.values.set(pos, newValue);

}

. . .

we can define
our own simple
min-heap
implementation
•minValue

returns the
value at index 0

•add places the
new value at the
next available
leaf (i.e., end of
list), then moves
upward until in
position

11

21

MinHeap class (cont.)

. . .

public void remove() {
E newValue = this.values.remove(this.values.size()-1);
int pos = 0;

if (this.values.size() > 0) {
while (2*pos+1 < this.values.size()) {

int minChild = 2*pos+1;
if (2*pos+2 < this.values.size() &&

this.values.get(2*pos+2).compareTo(this.values.get(2*pos+1)) < 0) {
minChild = 2*pos+2;

}

if (newValue.compareTo(this.values.get(minChild)) > 0) {
this.values.set(pos, this.values.get(minChild));
pos = minChild;

}
else {

break;
}

}
this.values.set(pos, newValue);

}
}

•remove removes the last leaf
(i.e., last index), copies its value
to the root, and then moves
downward until in position

22

Heap sort
the priority queue nature of heaps suggests an efficient sorting algorithm

§ start with the ArrayList to be sorted
§ construct a heap out of the elements
§ repeatedly, remove min element and put back into the ArrayList

§ N items in list, each insertion can
require O(log N) swaps to
reheapify
àconstruct heap in O(N log N)

§ N items in heap, each removal
can require O(log N) swap to
reheapify
àcopy back in O(N log N)

public static <E extends Comparable<? super E>>
void heapSort(ArrayList<E> items) {

MinHeap<E> itemHeap = new MyMinHeap<E>();

for (int i = 0; i < items.size(); i++) {
itemHeap.add(items.get(i));

}

for (int i = 0; i < items.size(); i++) {
items.set(i, itemHeap.minValue());
itemHeap.remove();

}
}

thus, overall efficiency is O(N log N), which is as good as it gets!
§ can also implement so that the sorting is done in place, requires no extra storage

12

23

Red-black sort

heap sort suggests an additional O(N log N) sort
§ start with the ArrayList to be sorted
§ construct a balanced-ish binary search tree out of the elements
§ iterate over the binary search tree and put back into the ArrayList

§ since TreeSet stores values in a
red-black tree, each add is
O(log N)
àconstruct tree in O(N log N)

§ using an iterator, can traverse
the items in order
àcopy back in O(N)

public static <E extends Comparable<? super E>>
void redBlackSort(ArrayList<E> items) {

TreeSet<Integer> itemSet = new TreeSet<Integer>();
for (int i = 0; i < items.size(); i++) {

itemSet.add(items.get(i));
}

int i = 0;
for (int val : itemSet) {

items.set(i, val);
i++;

}
}

thus, overall efficiency is O(N log N), which is as good as it gets!
§ but it does require extra storage for the tree

