
1

1

CSC 321: Data Structures

Fall 2018

Algorithm analysis, searching and sorting
§ best vs. average vs. worst case analysis
§ big-Oh analysis (intuitively)
§ analyzing searches & sorts
§ general rules for analyzing algorithms
§ analyzing recursion recurrence relations
§ specialized sorts
§ big-Oh analysis (formally), big-Omega, big-Theta

2

Algorithm efficiency

when we want to classify the efficiency of an algorithm, we must first
identify the costs to be measured

§ memory used? sometimes relevant, but not usually driving force
§ execution time? dependent on various factors, including computer specs
§ # of steps somewhat generic definition, but most useful

to classify an algorithm's efficiency, first identify the steps that are to be
measured

e.g., for searching: # of inspections, …
for sorting: # of inspections, # of swaps, # of inspections + swaps, …

must focus on key steps (that capture the behavior of the algorithm)
§ e.g., for searching: there is overhead, but the work done by the algorithm is

dominated by the number of inspections

2

3

Best vs. average vs. worst case
when measuring efficiency, you need to decide what case you care about

§ best case: usually not of much practical use
the best case scenario may be rare, certainly not guaranteed

§ average case: can be useful to know
on average, how would you expect the algorithm to perform
can be difficult to analyze – must consider all possible inputs and calculate the

average performance across all inputs

§ worst case: most commonly used measure of performance
provides upper-bound on performance, guaranteed to do no worse

sequential search: best? average? worst?

binary search: best? average? worst?

note: best ≠ small, worst ≠ big best/worst cases are relative to arbitrary size N

4

Big-Oh (intuitively)
intuitively: an algorithm is O(f(N)) if the # of steps involved in solving a
problem of size N has f(N) as the dominant term

O(N): 5N 3N + 2 N/2 – 20
O(N2): N2 N2 + 100 10N2 – 5N + 100
…

why aren't the smaller terms important?
§ big-Oh is a "long-term" measure
§ when N is sufficiently large, the largest term dominates

consider f1(N) = 300*N (a very steep line) & f2(N) = ½*N2 (a very gradual quadratic)
in the short run (i.e., for small values of N), f1(N) > f2(N)

e.g., f1(10) = 300*10 = 3,000 > 50 = ½*102 = f2(10)
in the long run (i.e., for large values of N), f1(N) < f2(N)

e.g., f1(1,000) = 300*1,000 = 300,000 < 500,000 = ½*1,0002 = f2(1,000)

3

5

Big-Oh and rate-of-growth
big-Oh classifications capture rate of growth

§ for an O(N) algorithm, doubling the problem size doubles the amount of work
e.g., suppose Cost(N) = 5N – 3

– Cost(s) = 5s – 3
– Cost(2s) = 5(2s) – 3 = 10s - 3

§ for an O(N log N) algorithm, doubling the problem size more than doubles the
amount of work
e.g., suppose Cost(N) = 5N log N + N

– Cost(s) = 5s log s + s
– Cost(2s) = 5(2s) log (2s) + 2s = 10s(log(s)+1) + 2s = 10s log s + 12s

§ for an O(N2) algorithm, doubling the problem size quadruples the amount of work
e.g., suppose Cost(N) = 5N2 – 3N + 10

– Cost(s) = 5s2 – 3s + 10
– Cost(2s) = 5(2s)2 – 3(2s) + 10 = 5(4s2) – 6s + 10 = 20s2 – 6s + 10

6

Big-Oh of searching/sorting

sequential search: worst case cost of finding an item in a list of size N
§ may have to inspect every item in the list

Cost(N) = N inspections + overhead
à O(N)

selection sort: cost of sorting a list of N items
§ make N-1 passes through the list, comparing all elements and performing one swap

Cost(N) = (1 + 2 + 3 + … + N-1) comparisons + N-1 swaps + overhead
= N*(N-1)/2 comparisons + N-1 swaps + overhead
= ½ N2 – ½ N comparisons + N-1 swaps + overhead
à O(N2)

4

7

General rules for analyzing algorithms

1. for loops: the running time of a for loop is at most
running time of statements in loop ´ number of loop iterations

for (int i = 0; i < N; i++) {
sum += nums[i];

}

2. nested loops: the running time of a statement in nested loops is
running time of statement in loop ´ product of sizes of the loops

for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {

nums1[i] += nums2[j] + i;
}

}

8

General rules for analyzing algorithms

3. consecutive statements: the running time of consecutive statements is
sum of their individual running times

int sum = 0;
for (int i = 0; i < N; i++) {

sum += nums[i];
}
double avg = (double)sum/N;

4. if-else: the running time of an if-else statement is at most
running time of the test + maximum running time of the if and else cases

if (isSorted(nums)) {
index = binarySearch(nums, desired);

}
else {

index = sequentialSearch(nums, desired);
}

5

9

EXAMPLE: finding all anagrams of a word (approach 1)
for each possible permutation of the word

• generate the next permutation
• test to see if contained in the dictionary
• if so, add to the list of anagrams

efficiency of this approach, where L is word length & D is dictionary size?

for each possible permutation of the word
• generate the next permutation

à O(L), assuming a smart encoding
• test to see if contained in the dictionary

à O(D), assuming sequential search
• if so, add to the list of anagrams

àO(1)

è O(L! ´ (L + D + 1)) è O(L! ´ D) note: 6! = 720 9! = 362,880
7! = 5,040 10! = 3,628,800
8! = 40,320 11! = 39,916,800

since L! different
permutations, will
loop L! times

10

EXAMPLE: finding all anagrams of a word (approach 2)
sort letters of given word
traverse the entire dictionary, word by word

• sort the next dictionary word
• test to see if identical to sorted given word
• if so, add to the list of anagrams

efficiency of this approach, where L is word length & D is dictionary size?

sort letters of given word

à O(L log L), assuming an efficient sort
traverse the entire dictionary, word by word

• sort the next dictionary word

àO(L log L), assuming an efficient sort
• test to see if identical to sorted given word

à O(L)
• if so, add to the list of anagrams

à O(1)

è O(L log L + (D ´ (L log L + L + 1))) è O(L log L ´ D)

since dictionary is
size D, will loop D
times

6

11

Approach 1 vs. approach 2

clearly, approach 2 will be faster O(L log L ´ D) vs. O(L! ´ D)

§ for a 5-letter word:
5 log 5 ´ 117,000 » 12 ´ 117,000 = 1,404,000
5! ´ 117,000 = 120 ´ 117,000 = 14,040,000

§ for a 10-letter word:
10 log 10 ´ 117,000 » 33 ´ 117,000 = 3,861,000

10! ´ 117,000 = 3,628,800 ´ 117,000 = 424,569,600,000

approach 3: instead of sorting the letters in a word, count the number of a's, b's, c's,
… and compare with counts from the other word EFFICIENCY?

12

Analyzing recursive algorithms
recursive algorithms can be analyzed by defining a recurrence relation:

cost of searching N items using binary search =
cost of comparing middle element + cost of searching correct half (N/2 items)

more succinctly: Cost(N) = Cost(N/2) + C

Cost(N) = Cost(N/2) + C can unwind Cost(N/2)
= (Cost(N/4) + C) + C
= Cost(N/4) + 2C can unwind Cost(N/4)
= (Cost(N/8) + C) + 2C
= Cost(N/8) + 3C can continue unwinding
= … (a total of log2 N times)
= Cost(1) + (log2N)*C
= C log2 N + C' where C' = Cost(1)
è O(log N)

7

13

Analyzing merge sort

cost of sorting N items using merge sort =
cost of sorting left half (N/2 items) + cost of sorting right half (N/2 items) +
cost of merging (N items)

more succinctly: Cost(N) = 2Cost(N/2) + C1N + C2

Cost(N) = 2Cost(N/2) + C1*N + C2 can unwind Cost(N/2)
= 2(2Cost(N/4) + C1N/2 + C2) + C1N + C2
= 4Cost(N/4) + 2C1N + 3C2 can unwind Cost(N/4)
= 4(2Cost(N/8) + C1N/4 + C2) + 2C1N + 3C2
= 8Cost(N/8) + 3C1N + 7C2 can continue unwinding
= … (a total of log2 N times)
= NCost(1) + (log2N)C1N + (N-1) C2

= C1N log2 N + (C'+C2)N - C2 where C' = Cost(1)
è O(N log N)

14

Big-Oh (slightly more formally)
more formally: an algorithm is O(f(N)) if, after some point, the # of steps

can be bounded from above by a scaled f(N) function
O(N): if number of steps can eventually be bounded by a line
O(N2): if number of steps can eventually be bounded by a quadratic
…

f(N)

C*N

T problem size

st
ep

s
re

qu
ire

d f(N)C*N2

T problem size

st
ep

s
re

qu
ire

d

"after some point" captures the fact that we only care about the long run
§ for small values of N, the constants can make an O(N) algorithm do more work

than an O(N2) algorithm
§ but beyond some threshold size, the O(N2) will always do more work

e.g., f1(N) = 300N & f2(N) = ½ N2 what threshold forces f1(N) £ f2(N) ?

8

15

Big-Oh (formally)
an algorithm is O(f(N)) if there exists a positive constant C & non-negative
integer T such that for all N ≥ T, # of steps required ≤ C*f(N)

for example, selection sort:
N(N-1)/2 inspections + N-1 swaps = (N2/2 + N/2 -1) steps
if we consider C = 1 and T = 1, then

N2/2 + N/2 - 1 ≤ N2/2 + N/2 since added 1 to rhs
≤ N2/2 + N(N/2) since 1 ≤ N at T and beyond
= N2/2 + N2/2
= 1N2 è O(N2)

f(N)

C*N

T problem size

st
ep

s
re

qu
ire

d f(N)C*N2

T problem size

st
ep

s
re

qu
ire

d

in general, can use C = sum of positive terms, T = 1 (but other constants work too)

16

Exercises
consider an algorithm whose cost function is

Cost(N) = 3N2 – 12N + 5

intuitively, we know this is O(N2)

formally, what are values of C and T that meet the definition?
§ an algorithm is O(N2) if there exists a positive constant C & non-negative integer T such that for all

N ≥ T, # of steps required ≤ C*N2

consider an algorithm whose cost function is
Cost(N) = 12N3 – 5N2 + N – 300

intuitively, we know this is O(N3)

formally, what are values of C and T that meet the definition?
§ an algorithm is O(N3) if there exists a positive constant C & non-negative integer T such that for all

N ≥ T, # of steps required ≤ C*N3

9

17

Exercise
consider a merge-3 sort algorithm

1. if the list contains 0 or 1 items, then done
2. otherwise, divide the list into thirds and recursively sort each third
3. then, merge the sorted thirds into a single sorted list

what is the recurrence relation for this algorithm?

closed (polynomial) form?

Big-Oh?

Specialized sorts
for general-purpose, comparable data, O(N log N) is optimal

§ i.e., it is proven that there is no sorting algorithm better than O(N log N) for
sorting arbitrary lists of elements (using only data comparisons)

§ proof later

interestingly, you can do better in special cases

§ if the range of potential data values is limited à frequency list

§ if the data values can be compared lexicographically à radix sort

18

10

19

Frequency lists
suppose there is a fixed, reasonably-sized range of values

§ such as years in the range 1900-2006

1975 2002 2006 2002 2005 1999 1950 1903 2006 2001 2006 1975 2003 1900 1980 1900

§ construct a frequency array with |range| counters, one for each year

§ then traverse and copy the appropriate values back to the list

2 0 0 1 . . . 1 2 1 0 1 3

1900 1901 1902 1903 . . . 2001 2002 2003 2004 2005 2006

1900 1900 1903 1950 1975 1975 1980 1999 2001 2002 2002 2003 2005 2006 2006 2006

big-Oh analysis?

20

Radix sort
suppose the values can be compared lexicographically (either character-

by-character or digit-by-digit)

radix sort:
1. take the least significant char/digit of each value
2. sort the list based on that char/digit, but keep the order of values with the same char/digit
3. repeat the sort with each more significant char/digit

"ace" "baa" "cad" "bee" "bad" "ebb"

most often implemented using a "bucket list"
§ here, need one bucket for each possible letter
§ copy all of the words ending in "a" in the 1st bucket, "b" in the 2nd bucket, …

"baa" "ebb" "cad"
"bad"

"ace"
"bee"

"a" "b" "c" "d" "e" . . .

11

21

Radix sort (cont.)

"baa" "ebb" "cad"
"bad"

"ace"
"bee"

"a" "b" "c" "d" "e" . . .

§ copy the words from the bucket list back to the list, preserving order
§ results in a list with words sorted by last letter

"baa" "ebb" "cad" "bad" "ace" "bee"

§ repeat, but now place words into buckets based on next-to-last letter
§ results in a list with words sorted by last two letters

"baa"
"cad"
"bad"

"ebb" "ace" "bee"

"a" "b" "c" "d" "e" . . .

"baa" "cad" "bad" "ebb" "ace" "bee"

§ repeat, but now place words into buckets based on first letter
§ results in a sorted list

"ace" "baa"
"bad"
"bee"

"cad" "ebb"

"a" "b" "c" "d" "e" . . .

"ace" "baa" "bad" "bee" "cad" "ebb"

big-Oh analysis?

Big-Omega & Big-Theta
Big-Oh represents an asymptotic upper bound on algorithm cost

§ but not necessarily a "tight" bound

§ if an algorithm is O(N), then it is also O(N2)

f(N) = 5N - 2 < 5N ≤ 5N2 (when N ≥ 1)

to really capture rate of growth, we must prove a tight bound on cost

22

Big-Omega is an asymptotic lower bound
§ an algorithm is Ω(f(N)) if there exists a positive constant C & non-negative integer

T such that for all N ≥ T, # of steps required ≥ C*f(N)

Big-Theta is a tight asymptotic bound (both lower and upper)
§ an algorithm is θ(f(N)) if it is O(f(N)) and Ω(f(N))

12

Proving a tight bound
to formally prove rate-of-growth, must show Big-Theta

§ f(N) = N2 + 5N – 2 ≤ N2 + 5N ≤ N2 + 5N2 (when N ≥ 1) = 6N2 è O(N2)

§ f(N) = N2 + 5N – 2 ≥ N2 + 5N – 2N (when N ≥1) = N2 + 3N > 1N2 è Ω(N2)

èθ(N2)

as long as we are conservative in proving the upper-bound, the
corresponding lower-bound usually follows easily

§ so, usually algorithm analysis is stated in terms of Big-Oh
(even though Big-Theta is implied)

23

A log is a log
mathematically, x = logb y ßà y = bx

e.g., 10 = log2 1024, since 1024 = 210

properties of logarithms
logb (nm) = logb n + logb m logb (n/m) = logb n − logb m
logb (nr) = r logb n loga n = logb n / logb a

24

this last property is why we don't care about the log base for Big-Oh

f(N) is O(loga N) ßà f(N) <= C loga N for N ≥ T
ßà f(N) <= C loga N = C (logb N / logb a) = (C/logb a) logb N for N ≥ T
ßà f(N) is O(logb N)

13

How bad is O(N!)?

recall the first approach to generating anagrams O(L! x D)

Stirling's formula: where

§ as n gets large, ε(n) approaches 0, so

è O(N!) ~ O(NN)

25

