CSC 321: Data Structures

Fall 2018

Algorithm analysis, searching and sorting
= best vs. average vs. worst case analysis
= big-Oh analysis (intuitively)
= analyzing searches & sorts
= general rules for analyzing algorithms
= analyzing recursion recurrence relations
= gspecialized sorts
= big-Oh analysis (formally), big-Omega, big-Theta

Algorithm efficiency

when we want to classify the efficiency of an algorithm, we must first
identify the costs to be measured

= memory used? sometimes relevant, but not usually driving force
= execution time? dependent on various factors, including computer specs
= #of steps somewhat generic definition, but most useful

to classify an algorithm's efficiency, first identify the steps that are to be
measured
e.g., for searching: # of inspections, ...
for sorting: # of inspections, # of swaps, # of inspections + swaps, ...

must focus on key steps (that capture the behavior of the algorithm)

= e.g., for searching: there is overhead, but the work done by the algorithm is
dominated by the number of inspections

Best vs. average vs. worst case

when measuring efficiency, you need to decide what case you care about
= best case: usually not of much practical use
the best case scenario may be rare, certainly not guaranteed

= average case: can be useful to know
on average, how would you expect the algorithm to perform

can be difficult to analyze — must consider all possible inputs and calculate the
average performance across all inputs

= worst case: most commonly used measure of performance
provides upper-bound on performance, guaranteed to do no worse

sequential search: best? average? worst?
binary search: best? average? worst?
note: best # small, worst # big best/worst cases are relative to arbitrary size N

Big-Oh (intuitively)

intuitively: an algorithm is O(f(N)) if the # of steps involved in solving a
problem of size N has f(N) as the dominant term

O(N): 5N 3N+2 N/2-20
O(N?): N2 N2 +100 10N2 - 5N + 100

why aren't the smaller terms important?

= big-Oh is a "long-term" measure
= when N is sufficiently large, the largest term dominates

consider f,(N) = 300*N (a very steep line) & f,(N) = %5*N2 (a very gradual quadratic)

in the short run (i.e., for small values of N), f;(N) > f5(N)
e.g., f;(10) = 300%10 = 3,000 > 50 = %:*102 = f,(10)
in the long run (i.e., for large values of N), f;(N) < f,(N)
e.g., f1(1,000) = 300*1,000 = 300,000 < 500,000 = %*1,0002 = f,(1,000)

Big-Oh and rate-of-growth

big-Oh classifications capture rate of growth

= for an O(N) algorithm, doubling the problem size doubles the amount of work
e.g., suppose Cost(N) = 5N - 3
— Cost(s)=5s-3
- Cost(2s) =5(2s) - 3= 10s -3

= for an O(N log N) algorithm, doubling the problem size more than doubles the
amount of work

e.g., suppose Cost(N) =5N log N + N
- Cost(s)=5slogs+s
— Cost(2s) = 5(2s) log (2s) + 2s = 10s(log(s)+1) + 2s = 10s log s + 125

= for an O(N?) algorithm, doubling the problem size quadruples the amount of work
e.g., suppose Cost(N) = 5N2 - 3N + 10
- Cost(s) =5s2-3s + 10
- Cost(2s) = 5(2s)? — 3(2s) + 10 = 5(4s2) — 6s + 10 = 20s2 — 6s + 10

Big-Oh of searching/sorting

sequential search: worst case cost of finding an item in a list of size N
= may have to inspect every item in the list

Cost(N) = N inspections + overhead
- O(N)

selection sort: cost of sorting a list of N items
= make N-1 passes through the list, comparing all elements and performing one swap

Cost(N) = (1 +2+ 3+ ... + N-1) comparisons + N-1 swaps + overhead
= N*(N-1)/2 comparisons + N-1 swaps + overhead
=% N2 -1 N comparisons + N-1 swaps + overhead
- O(N?)

General rules for analyzing algorithms

1. for loops: the running time of a for loop is at most
running time of statements in loop x number of loop iterations

for (int i = 0; 1 < N; i++) {
sum += nums[i];

}

2. nested loops: the running time of a statement in nested loops is
running time of statement in loop x product of sizes of the loops

for (int i1 = 0; 1 < N; 1i++) {
for (int 7 = 0; J < M; J++) {
numsl([i] += nums2[j] + 1i;

}

General rules for analyzing algorithms

3. consecutive statements: the running time of consecutive statements is
sum of their individual running times

int sum = 0;

for (int i = 0; 1 < N; 1i++) {
sum += nums[i];

}

double avg = (double)sum/N;

4. if-else: the running time of an if-else statement is at most
running time of the test + maximum running time of the if and else cases

if (isSorted(nums)) {
index = binarySearch (nums, desired);
}
else {
index = sequentialSearch (nums, desired);

}

EXAMPLE: finding all anagrams of a word (approach 1)

for each possible permutation of the word
e generate the next permutation
e test to see if contained in the dictionary
e« if so, add to the list of anagrams

efficiency of this approach, where L is word length & D is dictionary size?

for each possible permutation of the word
¢ generate the next permutation

- O(L), assuming a smart encoding since L! different
* test to see if contained in the dictionary permutations, will
- O(D), assuming sequential search loop L! times
e if so, add to the list of anagrams
->0(1)

= O(L! x (L+D+ 1)) =>» O(L! x D) note: 6!=720 9! = 362,880
71=5040 10! =3,628,800
81=40,320 11!=39,916,800

EXAMPLE: finding all anagrams of a word (approach 2)

sort letters of given word

traverse the entire dictionary, word by word
e sort the next dictionary word
* test to see if identical to sorted given word
e if so, add to the list of anagrams

efficiency of this approach, where L is word length & D is dictionary size?

sort letters of given word
- O(L log L), assuming an efficient sort
traverse the entire dictionary, word by word
sort the next dictionary word
—>0(L log L), assuming an efficient sort
e test to see if identical to sorted given word
- 0(L)
e« if so, add to the list of anagrams

> 0(1)

since dictionary is
size D, will loop D
times

> O(LlogL+ (D x (LlogL+L+1))) = O(Llog L x D)

Approach 1 vs. approach 2

clearly, approach 2 will be faster O(Llog L x D) vs. O(L! x D)
= for a 5-letter word:
5log 5 x 117,000 ~ 12 x 117,000 = 1,404,000
51 x 117,000 = 120 x 117,000 = 14,040,000

= for a 10-letter word:
10 log 10 x 117,000 ~ 33 x 117,000 = 3,861,000
10! x 117,000 = 3,628,800 x 117,000 = 424,569,600,000

approach 3: instead of sorting the letters in a word, count the number of a's, b's, C's,
... and compare with counts from the other word EFFICIENCY?

Analyzing recursive algorithms

recursive algorithms can be analyzed by defining a recurrence relation:

cost of searching N items using binary search =
cost of comparing middle element + cost of searching correct half (N/2 items)

more succinctly: Cost(N) = Cost(N/2) + C

Cost(N) = Cost(N/2) + C can unwind Cost(N/2)
= (Cost(N/4) + C) + C
= Cost(N/4) + 2C can unwind Cost(N/4)
= (Cost(N/8) + C) + 2C
= Cost(N/8) + 3C can continue unwinding
= (a total of log, N times)
= Cost(1) + (log,N)*C
=Clog,N+C' where C' = Cost(1)

> Oflog N)

Analyzing merge sort

cost of sorting N items using merge sort =
cost of sorting left half (N/2 items) + cost of sorting right half (N/2 items) +
cost of merging (N items)

more succinctly: Cost(N) = 2Cost(N/2) + C,N + C,

Cost(N) = 2Cost(N/2) + C,*N + C, can unwind Cost(N/2)
=2(2Cost(N/4) + C\N/2+ C,) + CN + C,
= 4Cost(N/4) + 2C4N + 3C, can unwind Cost(N/4)
= 4(2Cost(N/8) + C,N/4 + C,) + 2C/N + 3C,
= 8Cost(N/8) + 3C4N + 7C, can continue unwinding

=.. (a total of log, N times)
=NCost(1) + (log,N)CsN + (N-1) C,

=C4Nlog, N + (C'+C,N - C, where C' = Cost(1)
=> O(N log N)

Big-Oh (slightly more formally)
more formally: an algorithm is O(f(N)) if, after some point, the # of steps
can be bounded from above by a scaled f(N) function

O(NZ: if number of steps can eventually be bounded by a line
O(N2): if number of steps can eventually be bounded by a quadratic

steps required
steps required

T problem size T problem size

"after some point" captures the fact that we only care about the long run

= for small values of N, the constants can make an O(N) algorithm do more work
than an O(N?) algorithm
= but beyond some threshold size, the O(N2) will always do more work

e.g., fi(N) =300N & f,y(N) =" N2 what threshold forces f;(N) < f,(N) ?

Big-Oh (formally)

an algorithm is O(f(N)) if there exists a positive constant C & non-negative
integer T such that for all N = T, # of steps required < C*f(N)

steps required
steps required

T problem size T problem size

for example, selection sort:
N(N-1)/2 inspections + N-1 swaps = (N2/2 + N/2 -1) steps
if we consider C=1and T =1, then

N2/2 + N/2 -1 SN2 +N/f2 since added 1 to rhs
< N2 + N(N/2) since 1< N at T and beyond
=N2/2 + N2/2
= 1N2 = O(N?)

in general, can use C = sum of positive terms, T = 1 (but other constants work too) ‘ 15

Exercises

consider an algorithm whose cost function is
Cost(N)=3N2 - 12N +5

intuitively, we know this is O(N?)

formally, what are values of C and T that meet the definition?

= an algorithm is O(N?) if there exists a positive constant C & non-negative integer T such that for all
N =T, # of steps required < C*N2

consider an algorithm whose cost function is
Cost(N) = 12N3 - 5N2 + N — 300

intuitively, we know this is O(N?)

formally, what are values of C and T that meet the definition?

= an algorithm is O(N?) if there exists a positive constant C & non-negative integer T such that for all
N =T, # of steps required < C*N3

Exercise

consider a merge-3 sort algorithm

1. if the list contains 0 or 1 items, then done
2. otherwise, divide the list into thirds and recursively sort each third
3. then, merge the sorted thirds into a single sorted list

what is the recurrence relation for this algorithm?

closed (polynomial) form?

Big-Oh?

Specialized sorts

for general-purpose, comparable data, O(N log N) is optimal

= j.e., itis proven that there is no sorting algorithm better than O(N log N) for
sorting arbitrary lists of elements (using only data comparisons)

= proof later

interestingly, you can do better in special cases

= if the range of potential data values is limited - frequency list

= if the data values can be compared lexicographically - radix sort

Frequency lists

suppose there is a fixed, reasonably-sized range of values
= such as years in the range 1900-2006

|1975 |2002 |2006 |2002 |2005 | 1999 | 1950 | 1903 |2006 |zoo1 |2006 | 1975 |2003 | 1900 |1980 | 1900 |

= construct a frequency array with |range| counters, one for each year

|2|0|0|1| |1|2|1|0|1|3|

1900 1901 1902 1903 2001 2002 2003 2004 2005 2006

= then traverse and copy the appropriate values back to the list

|1900 | 1900 | 1903 | 1950 | 1975 | 1975 | 1980 | 1999 |2oo1 |2002 |2002 |2003 |2005 |2006 |2006 |2006 |

big-Oh analysis?

Radix sort

suppose the values can be compared lexicographically (either character-
by-character or digit-by-digit)

radix sort:
1. take the least significant char/digit of each value
2. sort the list based on that char/digit, but keep the order of values with the same char/digit
3. repeat the sort with each more significant char/digit

| "ace" | "baa" | "cad" | "bee" | "bad" | "ebb" |

most often implemented using a "bucket list"
= here, need one bucket for each possible letter
= copy all of the words ending in "a" in the 1st bucket, "b" in the 2" bucket, ...

"haa" | "ebb" cad" | "ace
bad" | "bee"

ngn " ner g g

20

10

Radix sort (cont.)

= copy the words from the bucket list back to the list, preserving order
= results in a list with words sorted by last letter

"baa" | "ebb" "cad" | "ace" ‘ | "baa" | "ebb" | "cad" | "bad" | "ace" | "bee" |
"bad" | "bee"
"a" "b" "c" "d" "e"

= repeat, but now place words into buckets based on next-to-last letter
= results in a list with words sorted by last two letters

"baa" | "ebb" | "ace" "bee" - | "baa" | "cad" | "bad" | "ebb" | "ace" | "bee" |
"cad"

"bad"

"a" "b" "c" "d" "e"

= repeat, but now place words into buckets based on first letter
= results in a sorted list

"ace" | "baa" | "cad" "ebb" - | "ace" | "baa" | "bad" | "bee" | "cad" | "ebb" |
"pad"
"bee” big-Oh analysis?

"a" "b" "c" "d" "e"

Big-Omega & Big-Theta

Big-Oh represents an asymptotic upper bound on algorithm cost
= but not necessarily a "tight" bound

= ifan algorithm is O(N), then it is also O(N?)

f(N) = 5N - 2 < 5N < 5N2 (when N = 1)
to really capture rate of growth, we must prove a tight bound on cost

Big-Omega is an asymptotic lower bound

= an algorithm is Q(f(N)_|) if there exists a positive constant C & non-negative integer
T such that for all N =T, # of steps required = C*f(N)

Big-Theta is a tight asymptotic bound (both lower and upper)
= an algorithm is B(f(N)) if it is O(f(N)) and Q(f(N))

22

11

Proving a tight bound
to formally prove rate-of-growth, must show Big-Theta
= f(N)=N2+5N-2<N2+5N < N2+5N2 (when N = 1) = 6N2 = O(N?)
= f(N)=N2+5N-22N2+5N-2N (when N =1) =N2+3N > 1N2 = Q(N?)

>0(\?)

as long as we are conservative in proving the upper-bound, the

corresponding lower-bound usually follows easily
= 50, usually algorithm analysis is stated in terms of Big-Oh
(even though Big-Theta is implied)

23

Alogis alog
mathematically, x = log, y €2y = b

e.g., 10 =log, 1024, since 1024 = 210

properties of logarithms
log, (nm) = log, n + logy, m log, (n/m) =log, n - log, m
log, (n") =rlog, n log,n =log,n/log,a

this last property is why we don't care about the log base for Big-Oh
f(N) is O(log, N) €-> f(N) <= C log, Nfor N =T
<> f(N) <= Clog, N = C (log, N / log, a) = (C/log, a) log,N for N =T
&> f(N) is O(log, N)

24

12

How bad is O(N!)?

recall the first approach to generating anagrams

T n
Stirling's formula: ! = +2an ('g') e<™ where

= asngets large, g(n) approaches 0, s0 n! ~ +/27n ('—l)"
e

> O(N!) ~ O(NN)

O(L!'x D)

1
< <
ni1 S€W=

1400

1200

1000

800

600

400

200

n!

5nlogn

30

40

50

25

13

