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Abstract 
 
Empirical skills are playing an increasingly important role 
in the computing profession and our society.  But while 
traditional computer science curricula are effective in 
teaching software design skills, little attention has been paid 
to developing empirical investigative skills such as forming 
testable hypotheses, designing experiments, critiquing their 
validity, collecting data, explaining results, and drawing 
conclusions.  In this paper, we describe an initiative at 
Dickinson College that integrates the development of 
empirical skills throughout the computer science 
curriculum.  At the introductory level, students perform 
experiments, analyze the results, and discuss their 
conclusions.  In subsequent courses, they develop their 
skills at designing, conducting and critiquing experiments 
through incrementally more open-ended assignments.  By 
their senior year, they are capable of forming hypotheses, 
designing and conducting experiments, and presenting 
conclusions based on the results.  
 
 
1  Motivation 
 
Computer science curricula have long emphasized problem 
solving and theoretical analysis as the central means for 
learning and reinforcing the discipline's concepts and 
principles. With this emphasis, however, little attention has 
been given to skills involving empirical investigation such 
as forming testable hypotheses, designing experiments, 
critiquing their validity, collecting data, explaining results, 
and  drawing  conclusions.      The  absence  of  these  skills 

from computer science curricula is readily apparent by 
examining the 1991  Report  of  the   ACM/IEEE-CS  Joint  
Curriculum Task Force [12].   While this report does 
identify "abstraction" as an important process and further 
defines it as including many of the elements found in the 
experimental sciences, it does not address empirical 
elements directly. Moreover, it does not offer ways in 
which these skills can be practiced, nor does it establish 
competencies expected of students. 
 
A survey of recent SIGCSE proceedings produces only a 
handful of papers with emphasis on empirical methods.  In 
[9], Schneider stresses experimentation, but in the context 
of a computational science program that bridges computer 
science and other academic disciplines. Other recent 
examples involve the use of experimentation in an upper-
level course as a tool for studying complex systems ([4] and 
[8] in operating systems;  [3] in human-computer 
interaction; and [14] in scientific programming).  At the 
introductory and intermediate levels, however, there is 
almost no coverage of these topics.  While textbooks 
generally provide principles for designing and 
implementing computer systems, there is rarely any 
guidance on empirically evaluating or investigating their 
properties once they are created. The texts rarely provide 
testing methods, and when they do, it is often a test for 
whether the system works as opposed to a performance 
comparison to alternate models.  When comparisons 
between models are made, it is typically only when 
theoretical analysis is possible and therefore it is the theory 
that is taught. 
 
Despite the dearth of coverage, empirical skills are playing 
an increasingly important role in the computing profession 
and our society.  If we wish our graduates to be capable 
experimenters and evaluators of experimental data, then a 
more systematic coverage of empirical methods throughout 
the curriculum is needed.  Just as we do not expect our 
students to be experts at program design and testing until 
they have had years of experience with the design process, 
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we should expect no more of them when it comes to 
designing and evaluating experiments. 
 
 
2  Benefits 
 
While we expect problem solving and theory to remain the 
cornerstone of computer science, the discipline does 
present a rich set of phenomena open to empirical 
investigation.  Moreover, the student who learns and 
practices these skills has much to gain from them. In 
particular, they benefit the student as a future computing 
professional, as a consumer of scientific knowledge, and, 
most immediately, as a learner of the discipline's content. 
 
The practice of empirical investigation prepares a student 
for a career in computing, where claims based on 
benchmarks, test suites and perceived usability are 
common. Unfortunately, the evidence for these claims is 
not always well grounded, and the traditional computer 
science curriculum does little to prepare a student for 
successfully critiquing their validity. Training in 
experimental methodology exposes students to potential 
flaws in conclusions based on empirical evidence and 
teaches how to compensate for them. In the future, 
empirical methods will be essential to evaluating and 
validating hardware and software systems as they become 
increasingly complex and defy the kinds of assumptions 
needed for theoretical analysis. In the wake of the 
increasing importance of empirical investigation, 
computing professionals have called for more training in 
experimentation [11,15]. 
 
Practicing experimental methodology in the context of a 
student's expertise provides the best learning situation since 
students can perform "sanity checks" on conclusions based 
on their prior knowledge.  However, these skills extend 
beyond the computer profession as many scientific, 
economic and social claims are based on empirical studies. 
As such, a practiced consumer of empirical evidence may 
apply it to one's health, finance, and citizenship. While 
computer science students may receive such training in 
other disciplines, it typically will not be a systematic 
experience lasting several courses and it will not be in the 
context of their expertise. 
 
As a further benefit of performing empirical investigations, 
students gain practice presenting and explaining results.  
Research in learning and cognition suggests that the use of 
investigation and explanation, as opposed to problem-
solving, often results in a better understanding of a 
discipline's content.  For example, a suite of studies 
identifies the practice of technical and scientific explanation 
[2] as the essential element to successfully learning 
scientific principles and concepts. Other studies report that 
the overly specific nature of problem solving under an 

engineering model is not often the best way to acquire an 
understanding of the problem's domain [10,13,5] (see [6] 
for a review).  In these cases, a less task-specific goal 
consistent with scientific hypothesis formation and testing 
is more appropriate for learning a system's principles. 
While formal mathematical analysis typically addresses 
these concerns, it is not the appropriate tool for many 
emerging areas of computer science, which include 
software usability, programming methodology, and their 
evaluation. 
 
 
3  Developing Empirical Skills 
 
There are many parallels between programming skills and 
empirical skills. It is generally accepted that developing 
expert skills as a program designer and evaluator takes 
years of experience.  In most curricula, skills are developed 
gradually (see [1,7] for rationale).  At the introductory 
level, students do very little design on their own. Instead, 
they learn by studying and modifying existing programs.  
While they may contribute to simple designs, it is usually in 
the context of a well-defined infrastructure (e.g., class 
interfaces).  At the intermediate level, students are expected 
to be able to design small programs or to manage more 
complex systems with minimal infrastructure. Finally, after 
this cumulative experience, they become capable designers 
and can be expected to use their skills to solve problems in 
upper-level courses. 
 
This same gradual process can be applied to developing 
empirical skills across the CS curriculum.  Early on, 
students will learn by performing experiments, analyzing 
the results, and perhaps most importantly, discussing their 
conclusions.  By the end of the process, they should be 
capable of forming testable hypotheses, designing and 
conducting experiments, and presenting conclusions based 
on the results. 
 
 
3.1  Introductory Level 
 
As was the case with program design, it is somewhat 
unreasonable to expect students to design good experiments 
at the introductory level.  Instead, the focus should be on 
exposing them to experimental methods, and teaching them 
to use experiments to study and analyze systems.  Through 
experimentation, students are able to study and solve 
interesting problems even before they have developed 
programming skills.  In addition, the foundation is laid for 
further empirical skills to be developed later. 
 
For example, the very first lab in our intro course involves 
experimentation with random sequences of letters.  The 
students are given code for generating and displaying 
random N-letter sequences of letters (where N can be 
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changed).  Using this program, they are led through the 
process of trying to approximate how many 3-letter words 
there are in the English language.  This is done by having 
them generate a large number of 3-letter sequences and 
count the number of words that occur.  (A side issue that 
they are asked to explore is just how many sequences must 
be generated to obtain a reasonable result.)  Once they have 
obtained a number, they can use it to estimate the relative 
probability of obtaining a word from a random letter 
sequence.  For example, if they generate 15 words out of 
500 random 3-letter sequences, then they may hypothesize 
that 3% of all random 3-letter sequences are words.  Since 
the total number of 3-letter sequences is easy to compute 
(263 = 17,576), they may then estimate the total number of 
3-letter words (17,576 * .03 = 527).  Once they have been 
led through this experiment, they are asked to repeat it in 
order to estimate the number of 4-letter words. 
 
Random events such as coin flips and dice rolls provide 
many opportunities for simulation and experimentation in 
an introductory course.  In addition to giving students 
practice with programming constructs such as loops and 
counters, experimentation with random events can help to 
remove many misconceptions students may have regarding 
probabilities.  For example, an early exercise asks the 
following question: Suppose you roll two 6-sided dice 1000 
times.  Which would you expect to get more of, 7's or 2's?  
Many students respond that this is impossible to predict 
since each roll of the dice is a random event.  Actually 
performing repeated experiments, simulating the dice rolls 
and keeping counts of the totals, is far more effective in 
dispelling this misconception than lectures. 
 
At the introductory level, students can also be exposed to 
empirical methods as a means of studying complex systems.  
Towards the middle of our intro course, students 
experiment with two different forms of random walk. They 
are given code that simulates a 1-dimensional random walk.  
The analogy is that of a person standing in the middle of an 
alley.  At the start, she is N steps away from either exit, and 
each step that she takes is in a random direction towards 
one of the exits.  The students are then led through a series 
of experiments to try to determine how many steps it takes 
(on average) to exit the alley.  Once they have 
accomplished this, they are asked to consider a slight 
variation of this random walk, where the person is standing 
at the end of a dead-end alley, whose exit is N steps away.  
They are asked to hypothesize as to whether this modified 
random walk should take more or fewer steps (on average) 
than the previous type.  They then must modify the code 
and use it to test their hypothesis. A considerable portion of 
the grade for this lab is based on the explanation of the 
results of their experiment and how it verifies or refutes 
their hypothesis. 
 

Finally, experimentation can be utilized at the introductory 
level to better the students' understanding of efficiency.  
The basic idea of rate-of-growth analysis can be 
exemplified by having students execute sorting algorithms 
on increasingly large data sets.  That is, they can verify 
experimentally that doubling the size of the input set causes 
an O(n2) sort to take four times as long, while an O(n log n) 
sort takes only a little more than twice as long.  This point 
can be further emphasized by providing a mystery sorting 
function, whose details are hidden from the student.  Simply 
by performing experiments, the student should be able to 
hypothesize as to which complexity class that algorithm 
belongs.  More advanced questions can also be posed for 
experimentation, such as which algorithms are most 
sensitive to pre-existent data ordering or the size of the data 
being sorted. 
 
 
3.2  Intermediate Level 
 
Having been exposed to experimental methods at the 
introductory level, students require less infrastructure and 
are even able to design and conduct small experiments on 
their own.  In addition to more complex simulations of the 
type described above, there are numerous opportunities for 
empirical studies at the intermediate level of the 
curriculum.  Experimentation can be used to help 
characterize the efficiency of data structures and 
algorithms, as well as compare and contrast different 
implementations. 
 
For example, a natural application for studying the behavior 
of queues is with a bank simulation.  Having experienced 
them in real life, students are able to describe some of the 
tradeoffs between multiple-line (one per teller) and single-
line (served by multiple tellers) models.  Students usually 
recognize that a single-line model is fairer, since customers 
are served in the order in which they enter the bank.  On the 
other hand, it is possible for a particular customer to be 
served more quickly in a multiple-line model by selecting 
the fastest line.  Using a random number generator to 
simulate the arrival and transaction lengths of customers, 
their intuitions can be verified or refuted by 
experimentation.  Complex connections between variables 
such as the customer arrival rate, maximum transaction 
time, number of lines, and number of tellers can also be 
explored. 
 
As more complex data structures are introduced for solving 
problems, their properties can be verified experimentally in 
addition to (or instead of) theoretically.  For example, when 
covering binary search trees in our data structures course, 
we consider the costs and tradeoffs involved with keeping 
the tree balanced.  The students are shown a theoretical 
result, that randomly inserting N values into a binary search 
tree will result in a tree whose maximum depth is roughly 
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(2 log N).  For an assignment, they must then verify this 
result experimentally.  While the idea for the experiment is 
provided for them, the details of its design and 
implementation are left to the students. 
 
Similarly, experimentation can be used to compare and 
contrast alternate implementations of data structures.  For 
example, various strategies for handling collisions in a hash 
table (e.g., chaining, linear probing, quadratic probing) can 
be presented and compared by timing each implementation 
on random data sets.  In another example, students study 
the efficiency of a dictionary, using different 
implementations (e.g., binary search tree, hash table, trie). 
These same techniques for comparing and contrasting data 
structures can be applied to algorithms.  Experimentation 
can be used to verify the complexity of competing 
algorithms, such as Floyd's algorithm and Dijkstra's 
algorithm for finding shortest paths.  In addition, many of 
these algorithms have theoretical performance predictions 
that only hold under certain assumptions.  For example, a 
theoretical prediction for hashing with linear probing 
assumes that each key is equally likely.  In practice, 
however, the most frequently used keys may correspond to 
elements that were first inserted into the table. In this case, 
experimental results would show that the average number 
of collisions is less than the theoretical prediction.  At this 
level, we may expect a student to write a concise paragraph 
describing his or her results and explaining why they differ 
from the theoretical predictions. 
 
Experimentation and explanation also play an important 
role in our Computer Organization class, where the students 
design, build and ultimately program a virtual machine 
emulator.  In addition to implementing components such as 
adders, ALUs, latches, and register banks, they must design 
tests that verify the correctness of their solutions. Grades 
are not only based on the correctness of the solutions but 
also on the completeness of the tests and the presentation of 
the results. Other examples might include implementing and 
comparing the performance of carry ripple vs. carry look-
ahead adders, micro-programmed vs. hardwired control 
units, and various cache line replacement policies. 
 
 
3.3  Upper Level 
 
Having developed their experimental design skills through 
incrementally more open-ended experiments, students at the 
upper level of the curriculum are better prepared to design 
experiments of their own.  They should also be capable of 
justifying their designs and how their results support or 
refute initial hypotheses.  At Dickinson College, a project in 
an advanced course typically requires a short report that 
presents the experimental design, describes the results, and 
explains their consequences.  Ideally, it follows the format 
of a scientific research paper. 

Systems courses afford many opportunities for empirical 
inquiry.  In a database systems course, students are assigned 
a project to compare the retrieval efficiency of a clustered 
index relative to an unclustered index.  The target entries of 
a clustered index are generally on the same pages whereas 
unclustered entries are scattered across many pages. Thus, 
the students' experiments should reveal that fewer read 
operations are required for the clustered index whenever 
multiple entries are retrieved.  The project assignment 
states the empirical question and specifies the independent 
and dependent variables.  The students were then required 
to write code for collecting the results and submit a one-
page single-spaced report that described and explained 
them. 
 
Another example of a course that assumes and makes 
extensive use of empirical skills is our Microcomputer 
Interfacing course.  This course explores, in a laboratory 
setting, ways to interface electronics, actuators and sensors 
to a computer for control and data acquisition purposes.  
Throughout the semester students calculate the theoretical 
performance of systems, design experiments to measure 
performance and compare their results to the theory.  As 
one example, in the lab on A/D converters students are 
given the task of calculating and experimentally verifying 
the resolution of an A/D converter.  The theory behind the 
calculations is covered in class, however the experiment is 
designed entirely by students working in groups of two.  
Other assignments, such as designing a temperature control 
system for a warehouse, are designed to force the students 
to make design decisions.  As they do so, they are asked to 
explain the tradeoffs involved in their design, such as why 
they implemented parts of the system in hardware as 
opposed to software and vice-versa.  When there is not a 
clear-cut way of making a design decision, several 
implementations can be sketched out and compared 
theoretically or implemented and compared empirically.  
Evaluation of each lab is based on a lab notebook kept in a 
format similar to what might be used in a research 
laboratory.  The grade for the lab portion of the course is 
based on how well the students design, conduct, document 
and explain their experiments in the notebooks. 
 
Whether integrated into the curriculum or offered as a 
separate course, the study of human-computer interaction is 
playing an increasingly important role in computer science 
programs.  Perhaps more than any other area, mastery of 
empirical investigative skills is critical for its successful 
study. Students who have already practiced experiment 
design and implementation will have a needed start towards 
addressing the additional complexities of human behavior.  
At this level, students can be expected to formulate testable 
usability objectives, experimentally verify them, and justify 
prescribed improvements to the user interface.  
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The process of empirical skill development culminates in 
the senior seminar, where the students are expected to 
design, implement, and analyze experiments in the context 
of a capstone project. As an example, one student 
developed a greedy algorithm for assigning students to 
freshman seminars and compared its performance to the ad-
hoc method used by the college. Other students have 
compared the performance of the Solaris OS running on 
different hardware platforms, evaluated a genetic 
scheduling algorithm for Linux, and measured the capacity 
of a Linux web-server for serving text, graphic and CGI 
generated web pages.  Each project requires an oral 
presentation and written paper, as actually practiced in 
scientific communities. 
 
 
4  Conclusion  
 
Experience suggests that first-year students rarely 
understand what constitutes a good experiment. 
Furthermore, most have not developed the skills necessary 
to design and conduct quality experiments. The initiative 
described in this paper addresses these deficiencies using an 
incremental approach to teaching and practicing empirical 
investigative skills.  By their senior year, our students are 
capable of forming hypotheses, designing and conducting 
experiments, and interpreting the results, as demonstrated in 
their capstone projects.  In addition, the emphasis on 
explaining empirical phenomena throughout the curriculum 
requires students to link concrete results to abstract 
concepts, improving their understanding of both empirical 
investigation and the underlying core computer science 
concepts. 
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