

 202

Empirical Investigation throughout the CS Curriculum

David Reed

Department of Mathematics
and Computer Science

Dickinson College
Carlisle, PA 17013

reedd@dickinson.edu

Craig Miller

School of CTIS
DePaul University
Chicago, IL 60604

cmiller@cs.depaul.edu

Grant Braught

Department of Mathematics
and Computer Science

Dickinson College
Carlisle, PA 17013

braught@dickinson.edu

Abstract

Empirical skills are playing an increasingly important role
in the computing profession and our society. But while
traditional computer science curricula are effective in
teaching software design skills, little attention has been paid
to developing empirical investigative skills such as forming
testable hypotheses, designing experiments, critiquing their
validity, collecting data, explaining results, and drawing
conclusions. In this paper, we describe an initiative at
Dickinson College that integrates the development of
empirical skills throughout the computer science
curriculum. At the introductory level, students perform
experiments, analyze the results, and discuss their
conclusions. In subsequent courses, they develop their
skills at designing, conducting and critiquing experiments
through incrementally more open-ended assignments. By
their senior year, they are capable of forming hypotheses,
designing and conducting experiments, and presenting
conclusions based on the results.

1 Motivation

Computer science curricula have long emphasized problem
solving and theoretical analysis as the central means for
learning and reinforcing the discipline's concepts and
principles. With this emphasis, however, little attention has
been given to skills involving empirical investigation such
as forming testable hypotheses, designing experiments,
critiquing their validity, collecting data, explaining results,
and drawing conclusions. The absence of these skills

from computer science curricula is readily apparent by
examining the 1991 Report of the ACM/IEEE-CS Joint
Curriculum Task Force [12]. While this report does
identify "abstraction" as an important process and further
defines it as including many of the elements found in the
experimental sciences, it does not address empirical
elements directly. Moreover, it does not offer ways in
which these skills can be practiced, nor does it establish
competencies expected of students.

A survey of recent SIGCSE proceedings produces only a
handful of papers with emphasis on empirical methods. In
[9], Schneider stresses experimentation, but in the context
of a computational science program that bridges computer
science and other academic disciplines. Other recent
examples involve the use of experimentation in an upper-
level course as a tool for studying complex systems ([4] and
[8] in operating systems; [3] in human-computer
interaction; and [14] in scientific programming). At the
introductory and intermediate levels, however, there is
almost no coverage of these topics. While textbooks
generally provide principles for designing and
implementing computer systems, there is rarely any
guidance on empirically evaluating or investigating their
properties once they are created. The texts rarely provide
testing methods, and when they do, it is often a test for
whether the system works as opposed to a performance
comparison to alternate models. When comparisons
between models are made, it is typically only when
theoretical analysis is possible and therefore it is the theory
that is taught.

Despite the dearth of coverage, empirical skills are playing
an increasingly important role in the computing profession
and our society. If we wish our graduates to be capable
experimenters and evaluators of experimental data, then a
more systematic coverage of empirical methods throughout
the curriculum is needed. Just as we do not expect our
students to be experts at program design and testing until
they have had years of experience with the design process,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
© 2000 ACM ISBN 1-58113-213-1/99/0003…$5.00

 203

we should expect no more of them when it comes to
designing and evaluating experiments.

2 Benefits

While we expect problem solving and theory to remain the
cornerstone of computer science, the discipline does
present a rich set of phenomena open to empirical
investigation. Moreover, the student who learns and
practices these skills has much to gain from them. In
particular, they benefit the student as a future computing
professional, as a consumer of scientific knowledge, and,
most immediately, as a learner of the discipline's content.

The practice of empirical investigation prepares a student
for a career in computing, where claims based on
benchmarks, test suites and perceived usability are
common. Unfortunately, the evidence for these claims is
not always well grounded, and the traditional computer
science curriculum does little to prepare a student for
successfully critiquing their validity. Training in
experimental methodology exposes students to potential
flaws in conclusions based on empirical evidence and
teaches how to compensate for them. In the future,
empirical methods will be essential to evaluating and
validating hardware and software systems as they become
increasingly complex and defy the kinds of assumptions
needed for theoretical analysis. In the wake of the
increasing importance of empirical investigation,
computing professionals have called for more training in
experimentation [11,15].

Practicing experimental methodology in the context of a
student's expertise provides the best learning situation since
students can perform "sanity checks" on conclusions based
on their prior knowledge. However, these skills extend
beyond the computer profession as many scientific,
economic and social claims are based on empirical studies.
As such, a practiced consumer of empirical evidence may
apply it to one's health, finance, and citizenship. While
computer science students may receive such training in
other disciplines, it typically will not be a systematic
experience lasting several courses and it will not be in the
context of their expertise.

As a further benefit of performing empirical investigations,
students gain practice presenting and explaining results.
Research in learning and cognition suggests that the use of
investigation and explanation, as opposed to problem-
solving, often results in a better understanding of a
discipline's content. For example, a suite of studies
identifies the practice of technical and scientific explanation
[2] as the essential element to successfully learning
scientific principles and concepts. Other studies report that
the overly specific nature of problem solving under an

engineering model is not often the best way to acquire an
understanding of the problem's domain [10,13,5] (see [6]
for a review). In these cases, a less task-specific goal
consistent with scientific hypothesis formation and testing
is more appropriate for learning a system's principles.
While formal mathematical analysis typically addresses
these concerns, it is not the appropriate tool for many
emerging areas of computer science, which include
software usability, programming methodology, and their
evaluation.

3 Developing Empirical Skills

There are many parallels between programming skills and
empirical skills. It is generally accepted that developing
expert skills as a program designer and evaluator takes
years of experience. In most curricula, skills are developed
gradually (see [1,7] for rationale). At the introductory
level, students do very little design on their own. Instead,
they learn by studying and modifying existing programs.
While they may contribute to simple designs, it is usually in
the context of a well-defined infrastructure (e.g., class
interfaces). At the intermediate level, students are expected
to be able to design small programs or to manage more
complex systems with minimal infrastructure. Finally, after
this cumulative experience, they become capable designers
and can be expected to use their skills to solve problems in
upper-level courses.

This same gradual process can be applied to developing
empirical skills across the CS curriculum. Early on,
students will learn by performing experiments, analyzing
the results, and perhaps most importantly, discussing their
conclusions. By the end of the process, they should be
capable of forming testable hypotheses, designing and
conducting experiments, and presenting conclusions based
on the results.

3.1 Introductory Level

As was the case with program design, it is somewhat
unreasonable to expect students to design good experiments
at the introductory level. Instead, the focus should be on
exposing them to experimental methods, and teaching them
to use experiments to study and analyze systems. Through
experimentation, students are able to study and solve
interesting problems even before they have developed
programming skills. In addition, the foundation is laid for
further empirical skills to be developed later.

For example, the very first lab in our intro course involves
experimentation with random sequences of letters. The
students are given code for generating and displaying
random N-letter sequences of letters (where N can be

 204

changed). Using this program, they are led through the
process of trying to approximate how many 3-letter words
there are in the English language. This is done by having
them generate a large number of 3-letter sequences and
count the number of words that occur. (A side issue that
they are asked to explore is just how many sequences must
be generated to obtain a reasonable result.) Once they have
obtained a number, they can use it to estimate the relative
probability of obtaining a word from a random letter
sequence. For example, if they generate 15 words out of
500 random 3-letter sequences, then they may hypothesize
that 3% of all random 3-letter sequences are words. Since
the total number of 3-letter sequences is easy to compute
(263 = 17,576), they may then estimate the total number of
3-letter words (17,576 * .03 = 527). Once they have been
led through this experiment, they are asked to repeat it in
order to estimate the number of 4-letter words.

Random events such as coin flips and dice rolls provide
many opportunities for simulation and experimentation in
an introductory course. In addition to giving students
practice with programming constructs such as loops and
counters, experimentation with random events can help to
remove many misconceptions students may have regarding
probabilities. For example, an early exercise asks the
following question: Suppose you roll two 6-sided dice 1000
times. Which would you expect to get more of, 7's or 2's?
Many students respond that this is impossible to predict
since each roll of the dice is a random event. Actually
performing repeated experiments, simulating the dice rolls
and keeping counts of the totals, is far more effective in
dispelling this misconception than lectures.

At the introductory level, students can also be exposed to
empirical methods as a means of studying complex systems.
Towards the middle of our intro course, students
experiment with two different forms of random walk. They
are given code that simulates a 1-dimensional random walk.
The analogy is that of a person standing in the middle of an
alley. At the start, she is N steps away from either exit, and
each step that she takes is in a random direction towards
one of the exits. The students are then led through a series
of experiments to try to determine how many steps it takes
(on average) to exit the alley. Once they have
accomplished this, they are asked to consider a slight
variation of this random walk, where the person is standing
at the end of a dead-end alley, whose exit is N steps away.
They are asked to hypothesize as to whether this modified
random walk should take more or fewer steps (on average)
than the previous type. They then must modify the code
and use it to test their hypothesis. A considerable portion of
the grade for this lab is based on the explanation of the
results of their experiment and how it verifies or refutes
their hypothesis.

Finally, experimentation can be utilized at the introductory
level to better the students' understanding of efficiency.
The basic idea of rate-of-growth analysis can be
exemplified by having students execute sorting algorithms
on increasingly large data sets. That is, they can verify
experimentally that doubling the size of the input set causes
an O(n2) sort to take four times as long, while an O(n log n)
sort takes only a little more than twice as long. This point
can be further emphasized by providing a mystery sorting
function, whose details are hidden from the student. Simply
by performing experiments, the student should be able to
hypothesize as to which complexity class that algorithm
belongs. More advanced questions can also be posed for
experimentation, such as which algorithms are most
sensitive to pre-existent data ordering or the size of the data
being sorted.

3.2 Intermediate Level

Having been exposed to experimental methods at the
introductory level, students require less infrastructure and
are even able to design and conduct small experiments on
their own. In addition to more complex simulations of the
type described above, there are numerous opportunities for
empirical studies at the intermediate level of the
curriculum. Experimentation can be used to help
characterize the efficiency of data structures and
algorithms, as well as compare and contrast different
implementations.

For example, a natural application for studying the behavior
of queues is with a bank simulation. Having experienced
them in real life, students are able to describe some of the
tradeoffs between multiple-line (one per teller) and single-
line (served by multiple tellers) models. Students usually
recognize that a single-line model is fairer, since customers
are served in the order in which they enter the bank. On the
other hand, it is possible for a particular customer to be
served more quickly in a multiple-line model by selecting
the fastest line. Using a random number generator to
simulate the arrival and transaction lengths of customers,
their intuitions can be verified or refuted by
experimentation. Complex connections between variables
such as the customer arrival rate, maximum transaction
time, number of lines, and number of tellers can also be
explored.

As more complex data structures are introduced for solving
problems, their properties can be verified experimentally in
addition to (or instead of) theoretically. For example, when
covering binary search trees in our data structures course,
we consider the costs and tradeoffs involved with keeping
the tree balanced. The students are shown a theoretical
result, that randomly inserting N values into a binary search
tree will result in a tree whose maximum depth is roughly

 205

(2 log N). For an assignment, they must then verify this
result experimentally. While the idea for the experiment is
provided for them, the details of its design and
implementation are left to the students.

Similarly, experimentation can be used to compare and
contrast alternate implementations of data structures. For
example, various strategies for handling collisions in a hash
table (e.g., chaining, linear probing, quadratic probing) can
be presented and compared by timing each implementation
on random data sets. In another example, students study
the efficiency of a dictionary, using different
implementations (e.g., binary search tree, hash table, trie).
These same techniques for comparing and contrasting data
structures can be applied to algorithms. Experimentation
can be used to verify the complexity of competing
algorithms, such as Floyd's algorithm and Dijkstra's
algorithm for finding shortest paths. In addition, many of
these algorithms have theoretical performance predictions
that only hold under certain assumptions. For example, a
theoretical prediction for hashing with linear probing
assumes that each key is equally likely. In practice,
however, the most frequently used keys may correspond to
elements that were first inserted into the table. In this case,
experimental results would show that the average number
of collisions is less than the theoretical prediction. At this
level, we may expect a student to write a concise paragraph
describing his or her results and explaining why they differ
from the theoretical predictions.

Experimentation and explanation also play an important
role in our Computer Organization class, where the students
design, build and ultimately program a virtual machine
emulator. In addition to implementing components such as
adders, ALUs, latches, and register banks, they must design
tests that verify the correctness of their solutions. Grades
are not only based on the correctness of the solutions but
also on the completeness of the tests and the presentation of
the results. Other examples might include implementing and
comparing the performance of carry ripple vs. carry look-
ahead adders, micro-programmed vs. hardwired control
units, and various cache line replacement policies.

3.3 Upper Level

Having developed their experimental design skills through
incrementally more open-ended experiments, students at the
upper level of the curriculum are better prepared to design
experiments of their own. They should also be capable of
justifying their designs and how their results support or
refute initial hypotheses. At Dickinson College, a project in
an advanced course typically requires a short report that
presents the experimental design, describes the results, and
explains their consequences. Ideally, it follows the format
of a scientific research paper.

Systems courses afford many opportunities for empirical
inquiry. In a database systems course, students are assigned
a project to compare the retrieval efficiency of a clustered
index relative to an unclustered index. The target entries of
a clustered index are generally on the same pages whereas
unclustered entries are scattered across many pages. Thus,
the students' experiments should reveal that fewer read
operations are required for the clustered index whenever
multiple entries are retrieved. The project assignment
states the empirical question and specifies the independent
and dependent variables. The students were then required
to write code for collecting the results and submit a one-
page single-spaced report that described and explained
them.

Another example of a course that assumes and makes
extensive use of empirical skills is our Microcomputer
Interfacing course. This course explores, in a laboratory
setting, ways to interface electronics, actuators and sensors
to a computer for control and data acquisition purposes.
Throughout the semester students calculate the theoretical
performance of systems, design experiments to measure
performance and compare their results to the theory. As
one example, in the lab on A/D converters students are
given the task of calculating and experimentally verifying
the resolution of an A/D converter. The theory behind the
calculations is covered in class, however the experiment is
designed entirely by students working in groups of two.
Other assignments, such as designing a temperature control
system for a warehouse, are designed to force the students
to make design decisions. As they do so, they are asked to
explain the tradeoffs involved in their design, such as why
they implemented parts of the system in hardware as
opposed to software and vice-versa. When there is not a
clear-cut way of making a design decision, several
implementations can be sketched out and compared
theoretically or implemented and compared empirically.
Evaluation of each lab is based on a lab notebook kept in a
format similar to what might be used in a research
laboratory. The grade for the lab portion of the course is
based on how well the students design, conduct, document
and explain their experiments in the notebooks.

Whether integrated into the curriculum or offered as a
separate course, the study of human-computer interaction is
playing an increasingly important role in computer science
programs. Perhaps more than any other area, mastery of
empirical investigative skills is critical for its successful
study. Students who have already practiced experiment
design and implementation will have a needed start towards
addressing the additional complexities of human behavior.
At this level, students can be expected to formulate testable
usability objectives, experimentally verify them, and justify
prescribed improvements to the user interface.

 206

The process of empirical skill development culminates in
the senior seminar, where the students are expected to
design, implement, and analyze experiments in the context
of a capstone project. As an example, one student
developed a greedy algorithm for assigning students to
freshman seminars and compared its performance to the ad-
hoc method used by the college. Other students have
compared the performance of the Solaris OS running on
different hardware platforms, evaluated a genetic
scheduling algorithm for Linux, and measured the capacity
of a Linux web-server for serving text, graphic and CGI
generated web pages. Each project requires an oral
presentation and written paper, as actually practiced in
scientific communities.

4 Conclusion

Experience suggests that first-year students rarely
understand what constitutes a good experiment.
Furthermore, most have not developed the skills necessary
to design and conduct quality experiments. The initiative
described in this paper addresses these deficiencies using an
incremental approach to teaching and practicing empirical
investigative skills. By their senior year, our students are
capable of forming hypotheses, designing and conducting
experiments, and interpreting the results, as demonstrated in
their capstone projects. In addition, the emphasis on
explaining empirical phenomena throughout the curriculum
requires students to link concrete results to abstract
concepts, improving their understanding of both empirical
investigation and the underlying core computer science
concepts.

References

[1] Astrachan, O., and D. Reed (1995). “AAA and CS1:

The applied apprenticeship approach to CS1.”
SIGCSE Bulletin 27(1): 1-5.

[2] Chi, M.T.H., M. Bassock, M.W. Lewis, P. Reimann,
and R. Glaser (1989). “Self-explanations: How
students study and learn examples in learning to solve
problems.” Cognitive Science 13: 145-182.

[3] Clarke, M.C. (1998). “Teaching the empirical
approach to designing human-computer interaction
via an experimental group project.” SIGCSE Bulletin
30(1): 198-201.

[4] Downey, A.B. (1999). “Teaching experimental
design in an operating systems class.” SIGCSE
Bulletin 31(1): 316-320.

[5] Miller, C., J. Lehman, and K. Koedinger (1999).
“Goals and learning in microworlds.” Cognitive
Science 23(3).

[6] Nhouyvanisvong, A., and K. Koedinger (1998).
“Goal specificity and learning: Reinterpretation of the

data and cognitive theory.” Proceedings of the 20th
Annual Conference of the Cognitive Science Society,
Erlbaum: 764-769.

[7] Pattis, R.E. (1991). “A philosophy and example of
CS1 programming projects.” SIGCSE Bulletin 23(1):
34-39.

[8] Robbins, S., and K.A. Robbins (1999). “Empirical
exploration in undergraduate operating systems.”
SIGCSE Bulletin 31(1): 311-315.

[9] Schneider, G.M. (1999). "Computational science as
an interdisciplinary bridge.” SIGCSE Bulletin 31(1):
141-145.

[10] Sweller, J. (1998). “Cognitive load during problem
solving: Effects on learning.” Cognitive Science 12:
257-285.

[11] Tichy, W.F. (1998). “Should computer scientists
experiment more?” Computer 31(5): 32-40.

[12] Tucker, A.B., editor (1992). "Report of the
ACM/IEEE-CS Joint Curriculum Task Force.” The
Association for Computing Machinery, New York.

[13] Vollmeyer, R., B. Burns, and K. Holyoak (1996).
“The impact of goal specificity on strategy use and
the acquisition of problem structure.” Cognitive
Science 20: 75-100.

[14] Zachary, J.L. (1997). “The gestalt of scientific
programming: Problem, model, method,
implementation, assessment.” SIGCSE Bulletin 29(1):
238-242.

[15] Zelkowitz, M.V., and D.R. Wallace (1998).
“Experimental models for validating technology."
Computer 31(5): 23-31.

	Chicago, IL 60604
	Dickinson College

