Developing Empirical Skillsin an
Introductory Computer Science Course

David Reed
Department of Mathematics and Computer Science
Creighton University
DaveReed@cr eighton.edu

From the Proceedings of the 34th Midwest I nstruction and Computing Symposium,
University of Northern lowa, 2001.

Abstract

This paper describes an introductory computer science course that emphasizes empirical
skills as well as programming and computer science breadth. Designed to attract both
non-majors and potential computer science majors, the course utilizes JavaScript in a
Web-based environment, allowing students to learn the basics of programming quickly
and also to take advantage of familiar and intuitive GUI interfaces. In completing online
laboratory assignments, students study interdisciplinary applications and learn to form
testable hypotheses, design and conduct experiments, and analyze the results. Through
interdisciplinary examples and experimentation, students not only develop critical
thinking skills but also learn to apply computing to other areas of study.

© 2001 by the Midwest Instruction and Computing Symposium. Permission to make printed or digital copies of al or
part of this material for educational or persona use is granted without fee provided that copies are not made or
distributed for profit or commercia advantage and that copies include this notice and the full citation on thefirst page.

I ntroduction

Empirical skills are playing an increasingly important role in the computing profession
and our society. For students pursuing a career in computing, the ability to design,
execute, and analyze experiments is central to tasks such as evaluating the validity of
hardware and software systems. While claims based on benchmarks, test suites, and
usability studies are common in the computing field, the evidence for such clams is not
always well grounded. Training in experimental methodology exposes aspiring computer
scientists to potential flaws in conclusions based on empirical evidence and teaches how
to compensate for them. Practicing experimental methodology within the computing
context also provides the best learning situation for computer science majors since they
can perform "sanity checks' on conclusions based on their prior knowledge and expertise.
In the wake of the increasing importance of empirical investigation, computing
professionals have called for more training in experimentation [6, 9, 11].

Beyond the computing profession, empirical skills benefit students in al disciplines. In
daly life, we are constantly confronted with scientific, economic, and socia claims that
are based on empirical studies. Developing a basic understanding of empirica methods
enables students to evaluate such claims and their relevance to everyday life. Since
empirical methods involve both quantitative and analytical thinking, students develop
skillsin these areas and gain practice presenting and explaining results. Finally, exposure
to experimenta methods, especially in the context of computing, can be directly
beneficia in a number of disciplines. Computers are used extensively as research tools,
especialy in the natural and social sciences where systems modeling and data analysis
require an understanding of both computing technology and the scientific method.

In 1999, Craig Miller, Grant Braught and | began an initiative at Dickinson College to
integrate experimentation into the computer science curriculum [7]. As is the case with
programming and problem-solving skills, we claimed that it is unrealistic to expect
students to be able to devel op effective empirical skillsin a single course or even asingle
year. Instead, we proposed a systematic, integrated approach where students are
introduced to experimental concepts early and revisit those concepts throughout the
curriculum. Early on, students would learn by performing experiments, analyzing the
results, and perhaps most importantly, discussing their conclusions. By the end of the
process, they would be capable of forming testable hypotheses, designing and conducting
experiments, and presenting conclusions based on the results.

This paper describes an introductory computer science course developed as part of this
empirical initiative (see [8] for further details). Designed to attract both non-majors and
potential computer science magjors, the course utilizes JavaScript in a Web-based
environment. While programming is the central activity in the course, programs are often
presented as tools for experimentation in interdisciplinary applications. As such, students
master fundamental empirical concepts and obtain practical experience in applying
experimental methods to real-world problems. For those students who continue in
computer science, this course builds a foundation for the further development of
empirical skills throughout the curriculum.

Course Format

Introductory computer science courses have generally focused on either programming
depth (e.g., [1, 4, 5]) or computing breadth (e.g., [2, 10]). The choice of JavaScript in
this course, with its flexible syntax and familiar Web-based interface, allows for a more
balanced approach. Using a ssimple subset of the JavaScript language, the course is able
to provide enough programming depth to develop problem-solving skills and an
appreciation of the agorithmic core of computer science. And since the language is
easier to learn than full-featured languages such as C++ and Java, roughly 35% of class
time can dtill be devoted to a survey of computing topics. Throughout the course,
interdisciplinary applications and experimentation serve to connect programming and the
broader field of computing.

Variants of this course have been taught at Dickinson College since Fall 1998 and at
Creighton University since Spring 2001. While these variants differ in some ways (e.g.,
the Dickinson course has weekly closed laboratories while the Creighton course does
not), they have the same basic format. Programming concepts are introduced and
implemented using a series of online programming tutorials. Programming skills are then
applied to problem solving using online laboratory assignments, which also emphasize
critical thinking and experimentation. Finally, the breadth of computer science is
presented in the form of readings and class discussions on a variety of computing topics.

Programming Tutorials

In order to be responsive to the individual needs of beginning programmers, the
programming component of the course emphasizes self-paced, interactive learning over
traditional lectures. Students are introduced to new programming concepts through a
series of online tutorials. Each tutorial contains explanatory text, examples, and exercises
for applying new concepts and techniques. While the emphasis is on developing
programming and problem-solving skills, many exercises have experimental components
aswell. For example, the tutorial on loops includes exercises where the students smulate
dice rolls and verify statistical properties of the roll distribution (such as the likelihood of
sevens versus twos). Another exercise involves simulating repeated drawings of a Pick 4
Lotto, and thus demonstrating just how unlikely is that a specific sequence of numbers
will be drawn.

OnlineLaboratories

Students apply their programming skills to solving a wide variety of problems using
online laboratory assignments. Interdisciplinary applications are frequently chosen to
demonstrate the relevance of computing to other fields of study such as biology, physics,
and economics. Modeled loosely on laboratories in the natural sciences, most lab
assignments emphasize empirical concepts and involve experimentation, requiring
students to form hypotheses about complex systems, design and conduct experiments,
and analyze their results. Example lab assignments are described in the next section.

Breadth Topics

The breadth component of the course focuses on topics that help students to understand
computer technology and its impact on society. Class periods are scheduled throughout
the semester for researching and discussing topics such as the structure of the Internet,
the history of computers, and ethical issues in computing. Some of these topics involve
experimentation using online applications. For example, Grant Braught, has developed a
collection of resources for exploring the internal workings of a computer [3]. Over the
course of the semester, students experiment with data representation, circuit design, data
flow and the ALU, and program transation using interactive applications in a Web
browser.

L aboratory Examples

In addition to providing practice in the design and implementation of programs, lab
assignments emphasize empirical concepts and the scientific method of experimentation.
Since the empirical aspect of this course is most apparent in these laboratories, a
description of representative lab assignmentsis given below.

Random L etter Sequences

Early lab assignments emphasize the use of existing programs as tools for supporting or
refuting hypotheses about complex systems. In the first lab, students are asked to
estimate the total number of 4-letter words in the English language. Initial guesses can
range from a few hundred to many thousands. To obtain a reasonable estimate, a more
scientific method is required.

Since this may be their first exposure to experimental methods, the instructor first leads
the students through the process of estimating the number of 3-letter words. It is noted
that there are 26° = 17,576 different 3-letter sequences. Using a Web page that generates
random letter sequences (see Figure 1), each student generates 100 random 3-letter
sequences and counts the number of real words that appear. If 3 of those sequences turn
out to be words, then that student will estimate the ratio of words to sequences to be
3/100, and thus the number of 3-letter words to be 527. Of course, given only 100 letter
sequences each, the counts obtained by individual students can very greatly and thus
produce disparate estimates. By averaging the counts obtained by all of the students,
however, the resulting estimate is usually quite close to 550 (the number of 3-letter words
in the UNIX dictionary).

Once the students understand the experimental method, they are then asked to repeat the
process to estimate the number of 4-letter words. Finaly, arelated question is posed for
their consideration: If the choice of letters in the random sequences were limited to only
the most commonly used letters, how would that affect the likelihood of obtaining real
words? Students must state a hypothesis and then use the page to conduct experiments to
refute or support that hypothesis (see Figure 2).

This assignment demonstrates several key concepts that will be constantly revisited
throughout the course. First is the idea that real-world, non-trivial problems can be
modeled and solved using computer programs. While the approach to solving this
problem can be understood independent of computers, its implementation would be
tedious and unwieldy without the program for generating and reviewing random letter
sequences. This realization can help to motivate students as they learn the (often
frustrating) details of programming. From an empirical perspective, students are
introduced to the idea that random events can have statistical predictability over the long
run. This can be counter-intuitive to students, who often assert, "Since it's random, you
can't predict anything." This and later assignments clearly demonstrate that the
distribution of certain random events can be predicted and used in problem solving (using
so-called Monte Carlo methods). Finally, this assignment provides a first look and
appreciation for the "Law of Large Numbers'. While the estimate obtained using only
100 random letter sequences is questionable, the estimate obtained when you combine the
data from 20 to 30 students (totaling 2,000 to 3,000 sequences) can be quite accurate.

Monte Carlo Tt

A similar laboratory assignment involves the use of a Monte Carlo method for
approximating the value of T Using basic geometry, it can be shown that the ratio of the
area of an inscribed circle to the area of a square is 4. Knowing this, it is possible to
approximate the value of 1tby generating random points in a square and keeping track of
how many of those points lie within the inscribed circle. For example, suppose you
generated 1000 random points in the square, 800 of which landed inside the inscribed
circle. From this data, you could estimate that the area of the circle is 800/1000 or 80%
of the area of the square. Since the actual ratio of the areas is known to be 174, solving
for Tt produces the approximation 3.2.

Using a Web page for generating random points (see Figure 3), students are able to
conduct repeated experiments to estimate the ratio of the two areas. The visua nature of
the page is appealing to many students and further demonstrates the ability of computer
programs in modeling complex systems. This lab aso begins to integrate
experimentation with programming, as the students must write a simple program that
takes their experimental data and produces an approximation for Tt.

This assignment reinforces many of the empirical concepts that were introduced in the
first lab. Once again, it demonstrates that computer programs can be used to solve
problems using data generated by random events. This assignment also emphasizes the
distinction between consistency and accuracy. Further demonstrating the "Law of Large
Numbers', students note that repeated experiments using a small number of random
points (say 100) can produce estimates that differ significantly, whereas repeated
experiments using a large number of points (say 10,000) will generally produce
consistent results. A formal measure of consistency, the relative difference between the
most extreme value and the average, is introduced for quantifying this concept.

Likewise, students note that the approximations of Ttare more accurate (compared to the
actual value of 1) as more and more points are generated.

Turtle Graphics & Random Walks

As the students develop more programming expertise, laboratory assignments further
integrate programming with experimentation. After they have learned about function
calls, alaboratory assignment provides a simple Turtle Graphics environment fro drawing
figures. Using a combination of JavaScript code and function calls to control the turtle,
the students are able to experiment and draw various shapes on the screen. For example,
they must determine the sequence of steps necessary to draw a triangle (move forward
and turn 120 degrees, three times) and a square (move forward and turn 90 degrees, four
times), and then generalize these answers to arbitrary N-sided polygons (move forward
and turn 360/N degrees, N times). Such tasks involve extensive trial-and-error to see if
proposed solutions work and making proper adjustments when they do not.

The idea of a random walk is introduced in the context of Brownian motion, although
applications from biology and computer graphics can be used as motivation as well.
Using the provided Turtle Graphics environment, students are able to program a
simulation of a random walk and verify the seemingly random distribution of walks on
the screen (see Figure 4). While a theoretical result concerning the expected distance
attained by a random walk of N steps is known, the final distance squared should equal
N, this result is tedious to verify experimentally using the Turtle Graphics page. Since a
large number of repetitions is required for accuracy (again, the Law of Large Numbers), a
separate Web page is provided for conducting this experiment (see Figure 5).

As was the case with the random letter sequences assignment, a new question is then
posed that requires the student to present a hypothesis and then conduct experiments to
support or refute that hypothesis: If the random walk were constrained so that turns can
only be made at right angles (i.e., 90°, 180° 270° or 360°), how would that affect the
expected distance of a random walk?

Random Sentences

Throughout the course, the role of experimentation in the testing and debugging of
programs is emphasized. After students learn about function definitions, they complete a
lab assignment involving grammar rules. For example, the following grammar rules
describe simple English sentences composed of a houn phrase followed by a verb phrase.
Optional parts of speech are possible in both the noun phrase and verb phrase, so
sentences of different lengths are possible.

sentence < nounPhrase + verbPhrase
nounPhrase < article + optional (adjective) + noun
verbPhrase < verb + optional (nounPhrase)

As part of the lab assignment, students must write a program that generates sentences,
with individual functions for randomly generating each of the parts of speech. Before
writing such a program, however, they must first study the grammar rules and make
predictions about the types of sentences that might be generated by those rules. For
example, they must recognize that the shortest possible sentence using the above
grammar rules contains three words, while the longest possible sentence contains seven
words. Similarly, if optiona parts of speech are expected to appear 50% of the time, then
N randomly generated sentences would be expected to contain ¥*N adjectives.
Predictions such as these can then be used to help test and debug their program as they
writeit.

Slot Machine

With careful planning, even traditional programming assignments can contain an
empirical component. After learning about conditionals and dynamic images in a Web
page, students complete a lab assignment in which they write an interactive program for
simulating a slot machine (see Figure 6). In addition to designing and implementing the
program, students also analyze the likelihood of winning at slots and verify their analysis
through experimentation. For example, assuming there are three slots and each slot can
display one of four random images, then there is a 1/16 chance of a spin producing three
identical images. If the payoff on awin isless than 16 times the cost of playing, then the
odds are against the player. Students perform this analysis and verify the long-term
performance of the player given different payoff schemes.

2-Dimensional Random Walks

Late in the course, students are presented with more open-ended lab assignments. Instead
of a specific sequence of exercises, students are given a problem to solve or system to
model, and must design programs and experiments on their own. For example, one lab
revisits the concept of a random walk, only now constrained to one dimension. The
analogy is that of an inebriated person standing in the middle of a narrow alley. With
each step, the person can stagger towards either exit. Asin the earlier random walk lab,
the students are given a theoretica result concerning 1-dimensional random walks: to
reach a goa distance of N requires N? steps on average. In order to verify this result
experimentally, students must design and implement a program for simulating such walks
and collect statistics on the number of steps (see Figure 7).

Following the pattern developed in earlier labs, a new question is then posed requiring
the student to formulate a hypothesis and then design experiments to test that hypothesis:
If it is a dead-end alley with only one exit, how does this affect the expected number of
steps required to exit, assuming steps that bounce up against the wall still count as steps?
Students must form a hypothesis and present a plausible justification for that hypothesis
(e.g., it will require more steps than in an unconstrained walk since steps up against the
wall count but are ineffective). They must then modify their random walk program to
simulate such constrained walks and conduct experiments to either support or refute their
hypothesis (see Figure 8).

Outcomes

Since this course was introduced at Dickinson College in the fall of 1998, student
reaction has been very positive. Student evaluations suggest that the balance between
breadth and depth has provided a more rewarding and engaging experience for non-
majors and potential majors alike. Enrollments in the course have increased steadily,
forcing the addition of extra sections in each successive year that the course has been
offered. In the spring of 2001, this course was adopted at Creighton University, replacing
the breadth-based and computer literacy courses previously offered.

While formal testing is required to make definitive claims, anecdotal evidence strongly
suggests that students are more capable experimenters and critics of empirical results than
they were before taking the class. In lab assignments, students clearly demonstrate the
ability to form hypotheses about the behavior of complex systems, design experiments to
test hypotheses, and integrate programming as a tool for conducting experiments.
Empirical concepts such as the distinction between consistency and accuracy and the Law
of Large Numbers are included on tests to ensure that students have a deeper
understanding of experimental methods.

For those students who continue in the computer science curriculum, the exposure to
empirical concepts prepares them for a deeper understanding of computing concepts. For
example, experimentation can help to identify the tradeoffs between data structures, to
characterize the efficiency of agorithms, and to understand scheduling schemes within an
operating system. The repeated coverage of experimental methods throughout the
curriculum reinforces fundamental concepts and further demonstrates the applicability of
computing to interdisciplinary applications.

Materials for this course, including programming tutorials and lab assignments, can be
found online at http://www.cr eighton.edu/~daver eed/cs0.

References

8.

0.

Astrachan, O., and D. Reed (1995). “AAA and CS1: The Applied Apprenticeship
Approach to CS1.” SGCSE Bulletin 27(1): 1-5.

Bagert, D., W. Marcy and B. Calloni (1995). “A Successful Five-year Experiment
with a Breadth-first Introductory Course.” SGCSE Bulletin 27(1): 116-120.
Braught, G. (2001). “Computer Organization in the Breadth-first Course.” To appear
in the Journal of Computing in Small Colleges.

Herrmann, N. and J. Popyack (1994). “An Integrated, Software-based A pproach to
Teaching Introductory Computer Programming.” SSGCSE Bulletin 26(1): 92-96.
House, D. and D. Levine (1994). “The Art and Science of Computer Graphics: A
Very Depth-first Approach to the Non-majors Course.” SGCSE Bulletin 26(1): 334-
338.

National Research Council Committee on Information Technology Literacy (1999).
Being Fluent with Information Technology, National Academy Press, Washington,
D.C.

Reed, D., C. Miller and G. Braught (2000). "Empirical Investigation throughout the
CS Curriculum." SIGCSE Bulletin 32(1): 202-206.

Reed, D. (2001). "Rethinking CSO with JavaScript.” SIGCSE Bulletin 33(1): 100-
104.

Tichy, W.F. (1998). “Should computer scientists experiment more?” Computer
31(5): 32-40.

10. Vandenberg, S. and M. Wollowski (2000). “Introducing Computer Science Using a

11.

Breadth-First Approach and Functional Programming.” S GCSE Bulletin 32(1): 202-
206.

Zelkowitz, M.V, and D.R. Wallace (1998). “Experimental models for validating
technology.” Computer 31(5): 23-31.

Random Letter Sequence Generator

Mumber of random letter sequences to generate; (100

Length of each random letter sequence; |3_

Letters to choose from Iabcdefghijklmnnpqrstuvwxgz

Click to generate letter sequences |

iwn grp abh xjt jvh onf dwg bEm kii tls ;I
zld jem age kvt unl vgg buv gxe =xfv gro
wvit vwhb beh lgp hte kai lmi wiw xit imw
ftk efd okg =zew udi jem nuw zvv fye hoe
owy ousg jgh gquv gou nsn fof odd ezl kzu
gug woge lyx uer xcj nti yvyg mkbh ufh iw)
*pj rka njs gmmo ald bsg mle bhnt xkz khx
iwe wka ged Xmwu uth cex wou whs yig wlo
elx rgo mhh idw xgl zwt lru uvwt utd knn
h=sl zdg cnt vwsw arl tio whomw onc ddp chni LI

Figurel: Random 3-letter sequences choosing from all letters.

Random Letter Sequence Generator

MNutmber of random letter sequences to generate; (100

Length of each random letter sequence: |3_

Letters to choose from: Ietao inshrd

Click to generate letter sequences |

cho nra aao oed ath rrd iar dni etd aesa :J
rhe dos itn hie tnd rhn sos inn thh dhd
dea ath dor orh raa doa rnr nrs dir sde
rhr rts ehn ses tth int rnh hah ooh dse
eeg itr ida sht sea rno hri rha arh neo
ana dot snn otr irs rrt rdh =sii ttn sod
o2l ais eon ain esh nee nhd ant iin dai
iee hdi hon iid air doe rao noi iid dhs
runt rse est ote oar nss sor erd aao ads
r=t hah ans aod hsn ntd rst atn end dis :j

Figure2: Random 3-letter sequences choosing from common letters only.

Murmhber of points to generate: |5':”:":'

Click to generate the points |

Mumber inside the circle: |3 Sza
Total number of points: |5'3”3'D

Clear points and reset counts |

Figure 3. Monte Carlo method for approximating PI.

turningle = randomInti(l, 3&60); ;I
stephize = 5;

Turtle Graphics

right (turningle)
forward(step3ize) ;

_ Bwecutecods | [100 fimes)
V' Start each drawing at (0,07

Reset graphics screen |

125
Turtle Status

heading: IEC‘

location: (I—T"E‘ ,|‘11)]
-200 200

distance fromm (0,0 IEFEi -11823

distarice? from (0,0%
I??ES.DDD
-125

Figure 4. Random walk simulation using Turtle Graphics.

Mumber of randorn wallkes: IlDDD
Execute random walks |

Mumber of steps per wall: |100

size of each step: |5

Espression for each turm: IrandDmInt {1, 3600

Clear graphics and reset |

Random YWalk Statistics

walles since last reset: IlDDU

average pixel distance®: |24?1 .015
average step distance?: |93-84052

-200 200

-125

Figure 5: Repeated random walk simulations.

Vegas Dave's Online Slots

Click to Spin |

Your current hanlroll: § I28
Your running debt: § I':'

Figure 6. Slot machine simulation.

Random Alley Walk

-10 |= 10
Current position: I—l':'

Generate | ISDD alley wallg)

with a I':' second delay between steps

Mutnber of steps this walls 290

Murmnber of randorm wallcs so far: [500

Total mumber of steps: ISDSEB
Avg number of steps: |1|:|1.136

Figure7. Repeated 1-dimensional random walks.

Random Dead-end Alley Walk
0] = 10

Current position: |1':'

_Gengrate | [500 attey walk(s)
with a I':' second delay between steps

Mumber of steps this walls IZT

Fumber of random wallkes so far: |500

Total mumber of steps: IS??EQ
Avg munber of steps: |115.53Ei

Figure 8. Repeated 1-dimensional constrained walks.

	Turtle Graphics & Random Walks

