
Near-Horn Prolog and the

Ancestry Family of Procedures�

David W. Reed

Department of Computer Science

Duke University

Durham, NC 27708 USA

dwr@cs.duke.edu

Donald W. Loveland

Department of Computer Science

Duke University

Durham, NC 27708 USA

dwl@cs.duke.edu

December 1992
Revised: August 1994

Abstract

The Near-Horn Prolog procedures have been proposed as e�ective procedures in the
area of disjunctive logic programming, an extension of logic programming to the (�rst-
order) non-Horn clause domain. In this paper, we show that these case-analysis based
procedures may be viewed as members of a class of procedures called the \ancestry fam-
ily," which also includes Model Elimination (and its variants), the Positive Re�nement
of Model Elimination, and SLWV-resolution. The common feature which binds these
procedures is the extension of SLD-resolution to full �rst-order logic with the addition
of an ancestor cancellation rule. Procedures in the ancestry family are all sound and
complete �rst-order procedures that can be seen to vary along three parameters: (1)
the number of clause contrapositives required, (2) the amount of ancestor checking that
must occur, and (3) the use (if any) of a Restart rule. Using a sequent-style presentation
format for all procedures, we highlight the close relationships among these procedures
and compare their relative advantages.

1 Introduction

The near-Horn Prolog project at Duke University has focused on extending the logic pro-
gramming paradigm to disjunctive programs, where implication clauses may have disjunc-
tions of atoms as consequent. (See [RLS92] for a project overview.) In [Lov87, Lov91],
Loveland introduced the procedure now known as Unit near-Horn Prolog (UnH-Prolog),
originally referred to as simply near-Horn Prolog or Progressive near-Horn Prolog. Sub-
sequently, Loveland and Reed [LR91, Ree92] developed the Inheritance near-Horn Prolog
(InH-Prolog) variant that is simpler and sometimes permits shorter refutations, but may
have a lower lips rate than UnH-Prolog. The major focus in the design of the near-Horn Pro-
logs has been to extend SLD-resolution [Kow74, Hil74] (the underlying procedure of Prolog)

�This research was partially supported by NSF Grants CCR-8900383 and CCR-9116203.

1

while retaining as many of its structural properties as possible. The near-Horn Prologs have
several features which make them desirable as Prolog extensions when compared to existing
procedures such as Model Elimination [Lov68, Lov69, Lov78] and SLI-resolution [MZ82].
These include a positive implication form for program clauses, limited contrapositive use, a
high lips rate, and a graceful performance degradation as programs become more non-Horn.
See [RL92, RLS92, Ree92] for detailed discussions of these and other features.

The near-Horn Prolog procedures were proposed as e�ective procedures in the area of
disjunctive logic programming, an extension of logic programming to the (�rst-order) non-
Horn clause domain. The near-Horn Prologs are what we refer to as \case-analysis" based
procedures. The basic idea behind these procedures is the splitting rule [Lov78] which allows
one to prove the unsatis�ability of a non-Horn program by proving the unsatis�ability of
a collection of Horn set cases. Previous work has shown that this case-analysis approach
is also taken by procedures with di�erent forms and design goals. In [RL92], InH-Prolog
was shown to be closely related to a variant of Plaisted's Simpli�ed Problem Reduction
Format [Pla82] and a subset of Gabbay and Reyle's N-Prolog [GR84, Gab85]. There is
also a close relationship between the near-Horn Prolog procedures and the reduction of a
non-Horn clause set to Horn sets via matrix reduction as presented in [CEFB].

In this paper, we show that these case-analysis based procedures may also be viewed as
members of a larger class of procedures, which we call the \ancestry family." The feature
which characterizes the ancestry family is the extension of SLD-resolution to full �rst-order
logic with the addition of an ancestor cancellation rule. Procedures in the ancestry fam-
ily are all sound and complete �rst-order procedures that can be seen to vary along three
parameters: (1) the number of clause contrapositives required, (2) the amount of ancestor
checking that must occur, and (3) the use (if any) of a Restart rule. The base procedure in
the ancestry family, Model Elimination or ME (Loveland [Lov68, Lov69, Lov78]), requires
the presence of all contrapositives of the clauses of the program. In addition, all ancestors
in a deduction must be checked for possible cancellation. Reduction in the use of contra-
positives would reduce the branching factor at nodes of the search tree, with an expected
decrease in the size of the search tree. Reducing the check of ancestors simpli�es the inner-
loop operation and permits possible speedup. By \inner-loop" we mean the processing of
a single occurrence of an inference rule, the basic code that is the atomic step in the proof
procedure. The Positive Re�nement of ME (Plaisted [Pla90]) requires all contrapositives as
in ME, but decreases the amount of ancestor checking necessary by only considering neg-
ative ancestors. SLWV-resolution (Pereira, Caires and Alferes [PCA90, PCA93]) requires
no contrapositives due to its introduction of a restart rule. However, the restart rule is
di�cult to control and may be more costly than having the contrapositives. The near-Horn
Prologs, of which we consider the two main variants here, may be viewed as compromise
approaches which restrict ancestor checking (as in the Positive Re�nement) and limit the
number of contrapositives by utilizing a restricted restart rule. Using a sequent-style pre-
sentation format for all procedures (occasionally taking liberties with the sequent format),
we highlight the close relationships between these procedures and compare their relative
advantages. For clarity and conciseness, we present all procedures as refutation procedures
at the propositional level, although each lifts to �rst-order logic as expected.

2

2 Near-Horn Prolog

The major focus in the design of the near-Horn Prolog procedures has been to extend
SLD-resolution (the underlying procedure of Prolog) while retaining as much of its form
and
avor as possible. The approach taken by the near-Horn Prolog procedures is to
combine SLD-resolution with case-analysis to perform non-Horn reasoning. Recall that
SLD-resolution is a procedure for reasoning from Horn clauses, i.e. clauses containing at
most one positive literal. (In this paper a clause, unless quali�ed, is viewed as a disjunction
of literals.) An SLD refutation (versus an SLD deduction) of Horn program P is a sequence
of lines, with each line containing goals to be solved and the initial line containing the
single goal FALSE, where FALSE is intended to have truth value false. Note that a negative
clause :B1 _ � � � _ :Bn, where each Bi is an atom, is equivalent to FALSE B1 ^ � � � ^Bn

in implication form, an alternate form we use heavily. Subsequent lines are obtained via
the operation of goal reduction. Given a line containing goal H and a program clause
H _ :B1 _ � � � _ :Bn (usually written in implication form as H B1 ^ � � � ^ Bn), goal
reduction replaces the goal H with the goals B1; : : : ; Bn. An SLD refutation is terminated
by a line with no goals.

Example 2.1 Consider the Horn program P , rewritten to the right in implication form.

:x _ :y) FALSE x ^ y
x _ :h1) x h1
y) y

h1 _ :y) h1 y

The following is an SLD refutation of P .

?- FALSE
:- x, y

:- h1; y

:- y, y

:- y
:-

The near-Horn Prolog procedures extend SLD-resolution to handle non-Horn clauses
as well. In expressing such clauses in implication form, we have a choice as to their rep-
resentation. Following the conventions of the �eld of disjunctive logic programming, the
clause H1 _ � � � _Hm _ :B1 _ � � � :Bn may be represented in disjunctive implication form
as H1 _ � � � _ Hm B1 ^ � � � ^ Bn. This positive implication form is commonly used in
descriptions of the near-Horn Prologs. Later in this paper, we will also make use of standard
implication form, where a non-Horn clause is represented by an implication with only one
consequent (head) literal. For example, H1 _ � � � _Hm _:B1 _ � � � :Bn may be represented
as H1 B1 ^ � � � ^ Bn ^ :H2 ^ � � � ^ :Hm or :B1 B2 ^ � � � ^ Bn ^ :H1 ^ � � � ^ :Hm

(among others).

3

A near-Horn Prolog refutation of program P is a sequence B0; : : : ; Bn of blocks, with
each block resembling an SLD refutation. The start block B0 is an SLD refutation with
the alteration that if a goal Hi calls a non-Horn (disjunctive) clause with head literals
H1; : : : ;Hm, then the heads H1; : : : ;Hi�1;Hi+1; : : : ;Hm are simply ignored (deferred) in
this block. That is, the called clause is treated as if it were a Horn clause with head Hi.
As in SLD-resolution, the block terminates when there are no goals remaining. However,
here the computation must continue in order to remove the deferred heads. For each
deferred head, there is a restart block Bj (j > 0) whose task is to remove that head. The
deferred head is promoted to distinguished active head and the new operation of cancellation
permits it to satisfy (cancel) any matching goal occurrence in the restart block. Except for
the cancellation operation, a restart block behaves the same as the start block (it is an
SLD-like refutation) so goal reduction with a non-Horn clause can introduce other deferred
heads. Finally, a near-Horn Prolog refutation terminates when some block removes the last
deferred head.

A standard feature of the near-Horn Prologs is the cancellation pruning rule, which
states that each restart block of a successful refutation must contain a cancellation by the
distinguished active head. This required cancellation provides a powerful pruning rule that
removes blocks from further consideration when needless non-Horn clauses are called that
lead the deduction astray. Another reason for demanding cancellation is that this provides
an extra test of relevance of the accepted block.

Example 2.2 Consider the following non-Horn program P (a slight generalization of the
program in Example 2.1), rewritten in disjunctive implication form on the right.

:x _ :y) FALSE x ^ y
x _ :h1) x h1
x _ :h2) x h2
y) y

h1 _ h2 _ :y) h1 _ h2 y

The following is a near-Horn Prolog refutation of P .

?- FALSE
:- x, y

:- h1; y

:- y, y # fh2g
:- y # fh2g
:- # fh2g

restart:
?- FALSE # h2
:- x, y # h2
:- h2; y # h2
:- y # h2 % cancellation

:- # h2

4

In the start block of the refutation, the initial goal FALSE reduces with the �rst clause,
introducing goals x and y (as in SLD-resolution). Similarly, the goal x reduces with the
second clause, introducing goal h1. Here, the goal h1 matches a head in the non-Horn
(disjunctive) clause, and so goal reduction introduces goal y and deferred head h2 (which is
delineated by brackets). The start block is completed by reducing goals y with the fact y.
In the restart block, the deferred head h2 becomes the distinguished active head (without
brackets) and is used to cancel goal h2 when that goal is introduced via reduction.

The near-Horn Prolog variants di�er from each other in their treatment of active heads
and restarts. InH-Prolog di�ers from the original UnH-Prolog variant by allowing more than
one active head in blocks, all with cancellation capability. In addition to the distinguished
active head promoted from the deferred head list, the restart block \inherits" all of the
active heads from the block in which the active head was deferred. For example, if head
d is deferred in a block with active heads a1; : : : ; ak, then the resulting restart block will
have active heads d; a1; : : : ; ak, with d being the distinguished active head. The removal of
the distinguished active head is still considered the task of the restart block (and required
by the cancellation pruning rule). The inheritance of active heads in InH-Prolog tends to
produce shorter refutations since extra active heads can be used to cancel goals. However,
the presence of more than one active head implies that the inner-loop speed degrades in
proportion to block depth.

Example 2.3 Consider the program from Example 2.2, altered by replacing the clauses
x h1 and x h2 with clauses x h1 ^ y, x _ h1 h2 and x h1 ^ h2. The following
is an InH-Prolog refutation of this new program.

?- FALSE
:- x, y

:- h1; y; y
:- y, y, y # fh2g
:- y, y # fh2g
:- y # fh2g
:- # fh2g

restart:
?- FALSE # h2
:- x, y # h2
:- h2; y # h2 fh1g
:- y # h2 fh1g % cancellation

:- # h2 fh1g
restart:

?- FALSE # h1; h2
:- x, y # h1; h2
:- h1; h2; y # h1; h2
:- h2; y # h1; h2 % cancellation

:- y # h1; h2 % cancellation

:- # h1; h2

5

As before, the deferred head h2 is introduced in the start block via reduction with the
clause h1 _ h2 y. In the restart block, the goal x reduces with the new clause x _ h1 h2,
introducing goal h2 and deferring h1. The resulting restart block has h1 as distinguished
active head and h2 as inherited active head. Both of these heads are used to cancel goals
in the restart block.

The other feature which di�erentiates the near-Horn Prolog variants is the selection of
initial goals in restart blocks (which we refer to as restart goals). In InH-Prolog, the restart
goal for a block is always FALSE. In UnH-Prolog, the restart goal can be FALSE or any other
ancestor goal of the distinguished active head, i.e. any goal which led up to the deferral
of that head. This mechanism for restarting is more complex than that of InH-Prolog and
can increase the branching factor, but can lead to shorter refutations. Using a search order
called Progressive Search, no additional search is introduced by these added restart goals
in the propositional case (see [Lov91]).

Example 2.4 Consider the program and refutation from Example 2.2. The following is a
shorter UnH-Prolog refutation of the program which takes advantage of the more complex
restart mechanism.

?- FALSE
:- x, y

:- h1; y
:- y, y # fh2g
:- y # fh2g
:- # fh2g

restart:
?- x # h2
:- h2 # h2
:- # h2 % cancellation

Note here that a shorter refutation is obtained by selecting the ancestor goal x for restarting.
By doing so, goal reduction with the clause FALSE x ^ y is avoided and so the additional
goal y is not reintroduced.

The basic idea behind the near-Horn Prolog procedures is to combine SLD-resolution
and case-analysis to perform non-Horn reasoning. Given a program P , an SLD refutation of
the Horn clauses in P su�ces as a refutation of P . If no such refutation exists, the splitting
rule [Lov78] can be used to produce a refutation by cases. The variant of the splitting rule
that we consider (slightly stronger than the original) states that given disjunctive program
P and ground clause H1 _ � � � _Hm B1 ^ � � � ^Bn:

P [fH1 _ � � � _Hm B1 ^ � � � ^Bng is unsatis�able i�
P [fHi B1 ^ � � � ^Bng is unsatis�able (for some i) and
P [fHjg is unsatis�able (for all j 6= i).

6

Here, P [fHi B1 ^ � � � ^ Bng can be seen as the case where all head atoms except for
Hi are dismissed (i.e presumed false). The other cases of the form P [fHjg represent
the alternatives where each head atom is assumed true and added as a conditional fact
(subsequently subsuming the original clause). The splitting rule states that showing the
unsatis�ability of these cases su�ces to show that the original program is unsatis�able.
Since an application of the splitting rule produces cases with one less non-Horn clause,
any disjunctive clause can be repeatedly split to eventually obtain cases from which SLD
refutations (i.e. nH-Prolog blocks) can be constructed. Following this reasoning, the InH-
Prolog variant may be seen as more directly implementing the case-analysis approach since
the inheritance of active heads corresponds to the retention of assumptions in subcases.

Example 2.5 Consider the program and refutation from Example 2.2 above. Using the
splitting rule, the program can be split into two cases: fFALSE x ^ y; x h1; x h2;

y; h1 yg and fFALSE x ^ y; x h1; x h2; y; h2g. The start block in the refuta-
tion corresponds to an SLD refutation of the �rst case (see Example 2.1), while the restart
block corresponds to an SLD refutation of the second.

The case-analysis approach taken by the near-Horn Prolog procedures is a natural one
for reasoning in the presence of non-Horn information. By reducing a non-Horn deduction
into a sequence of Horn deductions, the form and behavior of Horn clause procedures
(speci�cally SLD-resolution) can be retained. In [RL92], Reed and Loveland showed that
this same approach is also taken by two other procedures with very di�erent forms and
design goals. In particular, InH-Prolog was shown to be closely related to a variant of
Plaisted's Simpli�ed Problem Reduction Format [Pla82] and a subset of Gabbay and Reyle's
N-Prolog [GR84, Gab85]. The fact that this same form of case-analysis is present in such
varied procedures speaks to the generality and signi�cance of this approach.

3 The Ancestry Family

While the case-analysis approach taken by the near-Horn Prologs and related procedures
is a natural one, it is interesting to note that these procedures also �t into a larger class
of procedures, which we call the ancestry family. Members of this family are characterized
by the basic goal reduction operation of SLD-resolution, with the addition of ancestor can-
cellation. Recall that for our discussion and comparison, we present all procedures in this
paper as refutation procedures at the propositional level. To make the comparison of pro-
cedures more straightforward, we will utilize a common sequent-style format for describing
all procedures. In a slight deviance from standard interpretation, we will read the sequent
`�! �' not as `� follows logically from �', but instead as `� follows from P [�', where P is
the set of given formulas, i.e. the program. The inference rules of the systems will encode
the clauses of the program rather than logical equivalences that introduce connectives and
quanti�ers.

SLD refutations may be expressed in this format, although in this case � is empty for all
sequents in the proof, so the sequent arrow is omitted. The resulting trees then are also in a
standard problem reduction format, a form we will not emphasize here but which does give

7

some of the standard terminology we adopt presently. The root of an SLD refutation tree,
corresponding to the �rst line of a linear SLD refutation, will contain the goal FALSE (i.e.
the refutation tree is a derivation of FALSE). The operation of goal reduction is described
by the following inference rule schema:

Goal Reduction Rule:

For each implication clause H B1 ^ � � � ^Bn in P :

B1 � � � Bn

H

Recall that the literals in a problem-reduction tree are called goals, with the Bi's referred to
as subgoals of H. Also hereafter all clauses will be represented in standard implication form,
with one consequent (head) only. Non-Horn clauses will thus be represented using negative
antecedent (body) literals. The leaves of the refutation tree will then be lines with no
goals (obtained via goal reduction with facts). Describing SLD-resolution in this problem-
reduction format highlights the goal/subgoal nature of the goal reduction operation.

Example 3.1 Consider the SLD refutation from Example 2.1 above. To the right is the
corresponding refutation written in problem-reduction form.

?- FALSE
:- x, y
:- h1; y
:- y, y
:- y
:-

y

h1

x y

FALSE

Describing the goal reduction operation of SLD-resolution in this form also makes it
simple to describe the operation of ancestor cancellation which is common to the procedures
in the ancestry family. Ancestor cancellation allows for a goal to be solved (canceled) if it
matches with the negation of some ancestor goal, i.e. some literal which appears as goal
on the path between the root of the refutation tree and the goal in question. While this
notion of ancestor is non-local here, we shall see that it can be made local using our sequent
notation, where the list of ancestors of a goal is maintained in the sequent. Members of the
ancestry family of procedures may be characterized by the basic goal reduction mechanism
of SLD-resolution, with the addition of ancestor cancellation.

3.1 Model Elimination

The base procedure in the ancestry family is Model Elimination (ME), developed by Love-
land [Lov68, Lov69, Lov78]. In this paper, we will use the term ME to refer to several
di�erent variants of Loveland's original procedure. The original procedure utilized chains of
literals and a speci�c search ordering (for e�ciency reasons). The MESON procedure was

8

described by Stickel and Loveland [SL73, Lov78] as a problem reduction version of Model
Elimination, where chains of literals were replaced with \ancestor lists." SL-resolution
[KK71] is a variant of Model Elimination in which factoring is allowed, while SLI-resolution
[MZ82] is a generalization in which arbitrary selection is allowed. The role of ancestor res-
olution in ME was highlighted by Wakayama in [Wak88, Wak89], where he characterized
the basic ME procedure under the name MEA (Multiple Entry with Ancestry). While the
term ME will be used here to refer to all of these closely related variants, the presentation
below follows most closely the description of MESON in [Pla90].

Earlier, we described the members of the ancestry family as procedures which utilize the
basic SLD goal reduction operation, with the addition of ancestor cancellation. We should
note that describing ME as an extension of SLD-resolution is historically misleading since in
fact ME and SL-resolution came �rst and SLD-resolution was developed as a restriction of
SL-resolution. Thus, it would be more precise to say that SLD-resolution utilizes the basic
goal reduction operation of SL-resolution (ME) without ancestor cancellation. However,
SLD-resolution (through the success of Prolog) has become the banner of logic programming,
and so will remain our focus. On another historical note, we caution the reader familiar with
ME terminology not to confuse the operations of \goal reduction" (as described here) and
\reduction" (as described in ME literature). This overloading of the term \reduction" is
regrettable, but is driven by our overriding purpose, which is to describe all of the ancestry
family procedures in a common, problem-reduction style.

Like all of the procedures in the ancestry family, ME is a sound and complete procedure
for reasoning from possibly non-Horn programs. In order to obtain completeness, however,
ME requires the use of contrapositives. Informally, a contrapositive of an implication clause
is a variant of the clause in which a di�erent literal is chosen as head. The following
formalizes this de�nition.

De�nition 3.2 Let C = L1 L2 ^ � � � ^ Lk be a clause in implication form (where each
Li is a literal). We denote the contrapositives of C by

CONTRA(C) = fLi :L1 ^ � � � ^ :Li�1 ^ :Li+1 ^ � � � ^ :Lk j 2 � i � kg

Given a program P = fC1; : : : ; Cng, we denote the contrapositive set for P by

CONTRA(P) = CONTRA(C1) [� � � [CONTRA(Cn)

Given a program P in implication form, there is an ME goal reduction inference rule for
every clause in P [CONTRA(P). In addition, ME incorporates ancestor cancellation,
where a goal may be solved (canceled) if it matches the negation of an ancestor goal. In
order to localize the concept of an ancestor, we utilize our sequent notation `�! L', where
L is a literal and � is a list of ancestors of L. The goal reduction operation must then
collect ancestors in the ancestor list �. Actually, to make the cancellation operation clearer
and compatible with our notation, we will have the goal reduction operation collect the

9

negations of ancestors. Cancellation will then occur if a goal matches any literal in the
collected (negated) ancestor list.

Goal Reduction Rule:
For each implication clause H B1 ^ � � � ^Bn in P [CONTRA(P):

� [f:Hg ! B1 � � � � [f:Hg ! Bn

�! H

Ancestor Cancellation Axiom:

�! L where L 2 �

In addition to the above rules and axiom, one of the clauses in the program is chosen
as the support clause. Given the support clause L1 _ � � � _ Lk, we have the start rule

; ! :L1 � � � ; ! :Lk

; ! FALSE

Often, the support clause is a negative clause, so all goals :Li are atoms. An ME refutation
of a program P is a tree whose root is this start rule, and whose branches are built using
the Goal Reduction rules and Ancestor Cancellation axiom.

Example 3.3 Consider the program P from Example 2.2, written in implication form. To
the right is CONTRA(P).

:x y + :y x

x h1 + :h1 :x
x h2 + :h2 :x
y

h1 y ^ :h2 + h2 y ^ :h1
+ :y :h1 ^ :h2

The following is an ME refutation of P using the �rst clause as support clause.

f:x;:h1; h2g ! :x

f:x;:h1g ! y f:x;:h1g ! :h2

f:xg ! h1

; ! x ; ! y

; ! FALSE

10

Model Elimination has several advantages which make it the subject of widespread
study today [SL90, LBSB92, AL91]. It is a linear input procedure, and does not require
factoring (although factoring is allowed). It is amenable to e�cient implementation, as
�rst demonstrated by Stickel's Prolog Technology Theorem Prover (PTTP) [Sti84]. Also,
since it generalizes SLD-resolution, ME shares much of the behavior and simple format of
SLD-resolution (and thus Prolog).

Model Elimination does have two main disadvantages. First, the need for ancestor can-
cellation a�ects the inner-loop speed. Here, the inner-loop refers to the check for possible
ancestor cancellation, then either execution of the cancellation (if applicable) or else exe-
cution of an instance of goal reduction. The check for ancestor cancellation can often be
optimized by sophisticated implementation techniques such as partitioning the ancestors
by predicate and sign. In practice, this can keep the number of ancestors that have to be
checked quite short, although it should be noted that applications exist where these tech-
niques are ine�ective (e.g., consider theorems with only one predicate letter). On balance,
the ancestor check usually is not costly compared to anything that increases the branching
factor. Second, the use of contrapositives greatly expands the search space. The augmented
program P [CONTRA(P) contains one implication clause for every literal occurrence in
the original program P . Thus, the number of clauses available for goal reduction can
be quite large. In addition, the use of contrapositives can hurt readability by destroying
the procedural reading of clauses. When a user denotes a clause in implication form, say
can fly is bird ^ :injured, she often has this particular direction in mind. Utilizing
a contrapositive, say :is bird :can fly ^ :injured, may produce a deduction which
is unnatural and unintended by the user.

The variants of ME such as SL-resolution [KK71], strong-ME [Lov78], and SLI-resolution
[MZ82] that employ factoring introduce added tradeo�s. Checking for factors adds a cost
to inner-loop processing comparable to the ancestor check. The creation of factors adds to
the branching factor while sometimes realizing shorter proofs. The experiments that have
been done with this (see [FLSY74]) indicate that factoring does not pay on balance, but
experimentation is limited.

3.2 Positive Re�nement of ME

In [Pla88], Plaisted described a variant of ME which addresses its �rst main disadvantage:
its slower inner-loop speed due to ancestor checking. This variant, called the Positive
Re�nement of ME, limits ancestor cancellation to positive goals only. Thus, no ancestor
checking is necessary for negative goals, and the number of ancestors which must be checked
for a positive goal is the number of negative ancestors of that goal.

Using the same sequent-style notation as for ME, we can describe the Positive Re�ne-
ment as follows. Note that the Goal Reduction rule still considers all contrapositives of
program clauses, so the Positive Re�nement does not address the second main disadvan-
tage of ME: its expanded search space due to the full use of contrapositives. The Ancestor
Cancellation rule is modi�ed to only consider positive literals for cancellation. Correspond-
ingly, only negative goals need be incorporated into the ancestor lists in the Goal Reduction
rule.

11

Goal Reduction Rule:
For each implication clause H B1 ^ � � � ^Bn in P [CONTRA(P):

�0 ! B1 � � � �0 ! Bn

�! H

where �0 = � if H is positive, �0 = � [f:Hg if H is negative.

Ancestor Cancellation Axiom:

�! L where L 2 �

(Note: L is always positive)

Again, the Positive Re�nement utilizes a start rule constructed using a chosen support
clause. A refutation in the Positive Re�nement is a tree whose root is the start rule, and
whose branches are built using the new Goal Reduction rules and Ancestor Cancellation
axiom.

Example 3.4 Consider the ME refutation from Example 3.3. The following is the corre-
sponding refutation in the Positive Re�nement.

fh2g ! y

fh2g ! :x

; ! y ; ! :h2

; ! h1

; ! x ; ! y

; ! FALSE

Comparing this refutation tree with the ME refutation tree in Example 3.3, we �rst note
that ancestor lists in the Positive Re�nement do not contain negative literals (corresponding
to positive ancestor goals). Subsequently, the cancellation of goal :x in the ME refutation
tree is not allowed here. Instead, goal reduction must continue to complete the refutation.

As we mentioned above, for a positive goal the number of ancestor checks required is
the number of negative ancestors. In the worst case, this will still be proportional to the
refutation depth, as in ME. However, in domains where the amount of non-Horn infor-
mation is small, the number of negative ancestors will also be small and the savings can
be signi�cant. While the Positive Re�nement can improve the inner-loop speed of ME by
reducing ancestor checking, it should be noted that by disallowing cancellations that are
otherwise valid in ME, the Positive Re�nement may produce longer refutations (as shown
by Example 3.4).

12

3.3 SLWV-resolution

In [PCA90, PCA93], Pereira, Caires, and Alferes presented a procedure called SLWV-
resolution (SL-resolution Without contrapositive clause Variants). This procedure may
be viewed as a variant of ME which addresses its second main disadvantage, the use of
contrapositives. Unlike ME and its Positive Re�nement, SLWV-resolution does not require
the contrapositives of clauses. A program clause L1 _ � � � _ Lk need be represented by
only one implication clause, with any literal as head (such as L1 :L2 ^ � � � ^ :Lk).
While SLWV-resolution was described both in linear and problem-reduction formats, we
will consider the latter form since it more directly translates into our sequent notation.
SLWV-resolution utilizes the sequent-like notation `PN#L', where PN is a list of ancestor
literals and L is a goal (either a literal or a list of literals). The following inference rules
and axiom are de�ned.

Implication Rule:

PN [fLg#(B1; : : : ; Bn)
I

PN#L

where H 2 PN [fLg and H B1 ^ � � � ^BN 2 P .

And Rule:

PN#L1 PN#(L2; : : : ; Ln)
A

PN#(L1; : : : ; Ln)

Cancellation Axiom:

PN#L where :L 2 PN

As with ME and the Positive Re�nement, in addition to the above rules a start rule is
constructed using a chosen support clause. The support clause L1_ � � �_Lk yields the start
rule

;#(:L1; : : : ;:Lk)
S

;#FALSE

An SLWV-refutation is a tree whose root is the start rule, and whose branches are built
using the above rules and axiom.

Example 3.5 Consider the program P from Example 2.2, written in standard implication
form. Note that more than one encoding of this program in implication form is possible.

13

:x y

x h1
x h2
y

h1 y ^ :h2

The following is an SLWV refutation of P , using the �rst clause as support clause.

fx; h1;:h2g#h2
I�

fx; h1g#:h2
I A

fx; h1g#y fx; h1g#(:h2)
A

fx; h1g#(y;:h2)
I I

fxg#h1 ;#y
I A

;#x ;#(y)
A�

;#(x; y)
S

;#FALSE

Note that in this simple formulation, the Implication rule only applies to the left entry of
the And rule, thus requiring extra And rule applications such as at A�. Special attention
should be paid to the step labeled I* in this refutation tree. Here, the ancestor goal x is
used to reduce with the clause x h2.

Replacing the symbols `PN ' with `�' and `#' with `!', we �nd that the rules of SLWV-
resolution bear a striking resemblance to ME in the sequent notation described earlier. The
Implication rule (followed by the appropriate number of And rules) is roughly equivalent to
the Goal Reduction rule of ME, where (1) the goal in the lower sequent matches the head
of a program clause and is replaced by the body of the clause in the upper sequent, and
(2) the goal is added to an ancestor list (except in ME, the negation of the goal is added).
The interesting feature of the Implication rule is that it also allows goals in the ancestor list
PN to match and reduce with program clauses. This essentially allows for the deduction to
restart with some ancestor goal (as in the step labeled I* in the above refutation). The And
rule of SLWV-resolution is a notational convenience, permitting bodies of reduced clauses to
be introduced as a single unit (by the Goal Reduction rule). Finally, the Cancellation axiom
corresponds to the Ancestor Cancellation axiom of ME, noting again that the ancestor list
PN here stores actual ancestors as opposed to the negations of ancestors as in ME.

Having noted the close relationship between the rules of SLWV-resolution and ME, it
is not di�cult to translate SLWV-resolution into a sequent notation which closely parallels
ME. We will divide the work of the Implication rule into two rule schemas: one which
performs the goal reduction operation of ME and one which performs the restart operation
described above. Whereas the Implication rule could match an atom in the ancestor list
with a program clause and reduce, this operation will now be performed by �rst restarting

14

with the ancestor goal and then performing goal reduction. We may dispose of the And rule
altogether simply by allowing the Goal Reduction rule to produce multiple sequents directly
(instead of producing just one, and relying on the And rule to break up the goals). In order
to be consistent with the ME rules, we will store the negation of goals in the ancestor list,
so the Cancellation axiom will match that of ME.

Goal Reduction Rule:
For each implication clause H B1 ^ � � � ^Bn in P :

� [f:Hg ! B1 � � � � [f:Hg ! Bn
CR

�! H

Restart Rule:

� [f:Lg ! A
R

�! L

where :A 2 �.

Ancestor Cancellation Axiom:

�! L where L 2 �

Correspondingly, the start rule will produce multiple sequents as in ME. Thus, the
support clause L1 _ � � � _ Lk yields the start rule

; ! :L1 � � � ; ! :Lk
S

; ! FALSE

Example 3.6 Consider the SLWV refutation from Example 3.5 above. The following is
the corresponding refutation in sequent notation.

f:x;:h1; h2g ! h2
CR

f:x;:h1; h2g ! x
CR R

f:x;:h1g ! y f:x;:h1g ! :h2
CR

f:xg ! h1
CR CR

; ! x ; ! y
S

; ! FALSE

15

Note that in this refutation, goal reduction produces an upper sequent for each goal in
the clause body, whereas the corresponding goals are obtained in Example 3.5 through the
Implication rule and repeated applications of the And rule. Also, the use of the Implication
rule where an ancestor goal reduces with a clause (labeled I* in Example 3.5) is performed
here by a combination of the Restart rule and the Goal Reduction rule.

Transforming SLWV-resolution and ME into common notation highlights the distinc-
tions between the two procedures. SLWV-resolution does not require the contrapositives
of program clauses for goal reduction, but instead has the additional Restart rule. In fact,
comparing the refutation in Examples 3.3 and 3.6, it can be seen how the use of the Restart
rule can make contrapositives unnecessary. Where the ME refutation utilizes the contrapos-
itive :h2 :x, the SLWV-resolution refutation instead utilizes the Restart rule to return to
the ancestor x and then the Goal Reduction rule to reduce with the original clause x h2.
The trade-o�s between these two procedures then reduce to the advantages/disadvantages
of these features. Since SLWV-resolution does not require contrapositives it maintains the
order of clauses as written and so retains their natural procedural reading. The lack of con-
trapositives can also reduce the size of the search space since fewer clauses will be applicable
for goal reduction. Conversely, the search space is expanded by the restart mechanism of
SLWV-resolution. The restart mechanism is especially costly since it can be applied at any
point in the deduction. Furthermore, since one is free to restart with any ancestor goal, the
number of possible restarts at a given time is proportional to the refutation depth. This
seems to imply a serious degradation of the inner-loop speed as refutation depth increases.

A side issue worth mentioning here is the loss of linearity in SLWV-resolution due to
the Restart rule. An appealing property of ME is that each step in a derivation is obtained
via goal reduction on a goal in the previous step. This property does not follow in SLWV-
resolution, where the Restart rule can essentially return to a previous point in the deduction
by restoring an ancestor goal. As we shall see in the following sections, the near-Horn Prolog
procedures also lose the linearity property, but are able to achieve a kind of local linearity
by restricting the restart mechanism.

3.4 InH-Prolog

Whereas the Positive Re�nement may be seen as addressing the �rst main disadvantage
of ME (excessive ancestor checking), and SLWV-resolution may be seen as addressing the
second (the use of contrapositives), the near-Horn Prolog procedures may be viewed as
compromises which address both. Like the Positive Re�nement, the near-Horn Prologs
limit the amount of ancestor cancellation necessary. Like SLWV-resolution, they utilize a
mechanism for restarting the deduction as an alternative to contrapositives. However, by
allowing a limited number of contrapositives the near-Horn Prologs are able to implement
a better controlled restart mechanism.

As we described earlier, the near-Horn Prologs were designed to reason from disjunctive
logic programs, where a program clause of the formH1_� � �_Hm_:B1_� � �_:Bn (where each
Hi and Bi is an atom) is written in positive implication form: H1_� � �_Hm B1^� � �^Bn.
Again, the atom FALSE is added as the head of all-negative clauses. Since a disjunctive clause

16

is callable by any head, the near-Horn Prologs essentially utilize a contrapositive for each
extra disjunctive head (or, equivalently, for each extra positive literal in the original clause).
These contrapositives, denoted CONTRA+(P), are precisely those in CONTRA(P) with
positive heads. In general, CONTRA+(P) is a relatively small subset of CONTRA(P).
When P is Horn, CONTRA+(P) = ;, and for near-Horn programs (those containing few
non-Horn clauses), the size of CONTRA+(P) is small.

We will �rst consider the InH-Prolog variant. Recall that goal reduction in InH-Prolog
is similar to SLD goal reduction, where a disjunctive clause is callable by any head and
the remaining heads are deferred for later consideration. Essentially, this is goal reduction
using implication clauses from P [CONTRA+(P). The deferred heads (corresponding to
negative goals in the clauses), however, are not subject to goal reduction or cancellation
within a block. Instead, each deferred head results in a restart block, with that head
as distinguished active head and FALSE as initial goal. Since active heads are promoted
deferred heads, cancellation with an active head corresponds to ancestor cancellation with
a negative ancestor.

Describing InH-Prolog in our sequent notation, we �nd that since goal reduction and
cancellation are limited to positive goals only, there is no need to collect positive ancestors
in the Goal Reduction rule. The restart mechanism of InH-Prolog is described by the
Restart rule, which is applicable at a negative goal and introduces goal FALSE. Note here
that the inheritance of active heads is captured by the Restart rule since the negative goal
(corresponding to an active head) is added to the ancestor list and inherited by all sequents
above. The operation of canceling a goal with an active head is then described by the
Ancestor Cancellation axiom.

Goal Reduction Rule:
For each implication clause H B1 ^ � � � ^Bn in P [CONTRA+(P):

�! B1 � � � �! Bn
CR

�! H

(Note: H is always positive)

Restart Rule:

� [f:Lg ! FALSE
R

�! L

where L is negative.

Ancestor Cancellation Axiom:

�! L where L 2 �

(Note: L is always positive)

17

Unlike the earlier systems, the nH-Prologs do not require an additional start rule. Due
to the positive implication form of clauses, any unsatis�able clause set will have a clause
with FALSE as a head. The Goal Reduction rule for such a clause may be used at the root of
an InH-Prolog refutation, and so the refutation will still have root sequent `; ! FALSE'. If
desired, a start rule can be constructed for any clause in the same manner as for the other
systems, but the additional rule is not needed for completeness.

Example 3.7 Consider the program P from Example 2.2. The only clause in CONTRA+(P)
is an alternate representation of the non-Horn clause.

FALSE x ^ y
x h1
x h2
y

h1 y ^ :h2 + h2 y ^ :h1

The following is an InH-Prolog refutation of P in sequent notation (corresponding to
the linear refutation in Example 2.2).

fh2g ! h2
CR CR

fh2g ! x fh2g ! y
CR

fh2g ! FALSE
CR R

; ! y ; ! :h2
CR

; ! h1
CR CR

; ! x ; ! y
CR

; ! FALSE

There are several advantages of the InH-Prolog procedure over previous procedures.
Since InH-Prolog limits ancestor cancellation to positive goals only, it obtains the fast inner-
loop speed of the Positive Re�nement. Also, InH-Prolog requires only a limited number of
clause contrapositives. The number of contrapositives required is precisely the number of
extra heads in disjunctive (implication) clauses, and so is minimal when programs are close
to being Horn. While this is more than is required by SLWV-resolution, the extra contra-
positives required by InH-Prolog relative to SLWV-resolution seem to be far outweighed by
the control obtained over restarts. Whereas SLWV-resolution restarts can occur anywhere
in a deduction, and the number of possible restarts depends upon the refutation depth,
InH-Prolog restarts occur only at negative goals and always restart with the same goal,
the initial query. The restricted restart mechanism of InH-Prolog also implies a kind of
local linearity, where within a block (in tree form, a block corresponds to a subtree with
root goal FALSE), the desirable property of always reducing with the previous goal holds. It
should also be noted that InH-Prolog does maintain the procedural reading of clauses. A
disjunctive clause is treated as a multi-entry procedure callable by any head.

18

3.5 UnH-Prolog

Like InH-Prolog, the UnH-Prolog variant also represents a compromise approach to alle-
viating the disadvantages of ME. Both variants limit the amount of ancestor cancellation
required and introduce a restart mechanism to avoid contrapositives. While InH-Prolog
has a simple and controlled restart mechanism, UnH-Prolog utilizes a less controlled restart
mechanism with the advantage of a constant inner-loop speed. Instead of always restarting
with FALSE, UnH-Prolog restart blocks may begin with any positive ancestor of the distin-
guished active head. However, the fact that UnH-Prolog restart blocks do not inherit active
heads implies that checking for cancellation is a constant-time operation.

As was the case for InH-Prolog, UnH-Prolog in our sequent notation requires a Goal
Reduction rule for each implication clause in P [CONTRA+(P), where CONTRA+(P) is
the set of all contrapositives of P with positive heads. In contrast, here the Goal Reduction
rule must collect positive ancestors since these ancestors are needed when selecting a restart
goal. We will separate the antecedent of sequents into two lists: the positive ancestor set
� (whose members are used for restarts) followed by at most one negative ancestor in �
(used for cancellation). Since the positive ancestors are not to be used for cancellation
purposes, there is no reason to negate a positive goal when placing it in the antecedent.
Negative goals, which are handled by the Restart rule, are still negated when placed in the
antecedent since negative ancestors are used for cancellation. The fact that active heads are
not inherited is re
ected in the Restart rule where only the most recent negative ancestor
(corresponding to the distinguished active head) is retained.

Goal Reduction Rule:
For each implication clause H B1 ^ � � � ^Bn in P [CONTRA+(P):

� [fHg;�! B1 � � � � [fHg;�! Bn
CR

�;�! H

(Note: H is always positive)

Restart Rule:

�; f:Lg ! A
R

�;�! L

where L is negative and A 2 �.

Ancestor Cancellation Axiom:

�;�! L where L 2 �

(Note: L is always positive)

19

As was the case for InH-Prolog, an additional start rule is not needed since an unsat-
is�able clause set in positive implication form will have a clause with FALSE as a head. A
start rule may be introduced if desired, but it is su�cient to begin the refutation with root
sequent `; ! FALSE' and apply only those rules listed above.

Example 3.8 Consider the UnH-Prolog refutation from Example 2.4. The following is the
corresponding refutation in sequent notation.

fFALSE; x; h1g; fh2g ! h2
CR

fFALSE; x; h1g; fh2g ! x
CR R

fFALSE; x; h1g; ; ! y fFALSE; x; h1g; ; ! :h2
CR

fFALSE; xg; ; ! h1
CR CR

fFALSEg; ; ! x fFALSEg; ; ! y
CR

;; ; ! FALSE

At the step labeled R, the positive ancestor x is selected as restart goal. Again, note that
positive ancestors are stored directly in the leftmost list of the antecedent, whereas the
negations of negative ancestors are stored in the rightmost list.

Like InH-Prolog, UnH-Prolog utilizes only a limited number of contrapositives and main-
tains the procedural reading of disjunctive clauses. Goal reduction and ancestor cancellation
are similarly limited to positive goals only. One (possibly minor) advantage of UnH-Prolog
over the other procedures is its constant inner-loop speed due to considering only the most
recent negative ancestor for cancellation. Another advantage is possibly shorter proofs due
to restarts from a more favorable ancestor than FALSE. While we have witnessed the possi-
bility of shorter proofs, any advantage here is currently hypothetical. The cost of possible
shorter proofs is a more complex restart mechanism and an increase in restart possibilities,
suggesting increased search. However, it turns out that the number of restart possibilities
does not increase the search space swept when the Progressive search strategy is employed
[Lov91]. At the �rst-order level there is a redundancy factor of only two. Thus, the apparent
branching factor increase at restart goals is not realized in practice.

4 Summary

As described earlier, procedures in the ancestry family can be seen as extensions of SLD-
resolution which utilize ancestor cancellation to perform non-Horn reasoning. The proce-
dures vary along three parameters: (1) the number of clause contrapositives required, (2)
the amount of ancestor checking that must occur, and (3) the use (if any) of a Restart rule.
Thus, the relationships between these procedures can be summarized in a table with three
columns, one for each of these parameters. Table 1 highlights the trade-o�s between these
related procedures, allowing for straightforward comparisons. For example, the near-Horn
Prolog procedures are designed for and appear especially well-suited for programs which con-
tain relatively few non-Horn clauses. In such cases, the number of contrapositives required

20

by the procedures is small and so the restricted ancestor checking is obtained at minimal
cost. Conversely, SLWV-resolution would not appear to be well-suited for near-Horn pro-
grams since the small reduction in number of clauses would most likely be overshadowed
by the cost of the unrestricted Restart rule.

Table 2 gives for each procedure an upper bound on the number of inference rule ap-
plications (either Goal Reduction rule or Restart rule) that are possible at a node in the
search tree. This is the key variable for determining the branching factor at each node.
As is well-known, the greater the branching factor, the bigger the search to a given depth.
We note that excluded from this count is the number of possible Ancestor Cancellation
applications. In the propositional case, this need only be one due to the fact that if the
goal matches an ancestor, no other (identical) ancestor cancellations need be attempted.
At the �rst-order level, however, the goal may unify with more than one ancestor, intro-
ducing further branching (worst case, a di�erent Ancestor Cancellation application for each
ancestor).

Although a big branching factor is generally a big handicap to a procedure regarding
performance, there are many variables that are beyond the control of a simple analysis based
on the parameters we have studied. Most obvious, and often mentioned in this paper, is that
devices that increase branching factor also may shorten proofs. Also a�ecting performance
are pruning rules (such as the Cancellation Pruning Rule for the nH-Prologs mentioned
earlier) and choice of implementation architectures (such as partitioning the ancestor list).
These make a direct translation of the characteristics studied here into performance pre-
dictions very dangerous. However, characteristics leading to a large branching factor, and
to a lesser extent the devices that lead to slower inner-loop execution, are going to require
some o�setting savings. Thus, besides the better understanding of the procedures that the
analysis does provide, we think this also provides insight for implementors of any of the
procedures considered here.

We remark that thought was given to including results of naive implementations of the
procedures developed by the �rst author to aid his own understanding. Only at the end
of our writing this paper did we come to understand that such an inclusion would be a
mistake. For many reasons, some cited above, naive implementations can be misleading.
The only fair experimental comparisons involve serious implementations that bring in the
sophisticated architectures, the pruning rules, and whatever else the procedure allows. This
is beyond the scope of this paper.

21

Procedure Contrapositives Cancellation Restart

ME (MESON, all any goal none
SL, SLI, MEA)

Positive all positive goals only none
Re�nement

SLWV none any goal at any goal,
restart with
any ancestor

InH-Prolog limited positive goals only at negative goals,
(SPRF-D, subset restart with FALSE

of N-Prolog)

UnH-Prolog limited positive goals only at negative goals,
(check only most recent restart with

negative ancestor) positive ancestor

Table 1: The Ancestry Family (characterized by three parameters)

22

Procedure Possible inference rules

ME (MESON, # of clauses in P [CONTRA(P)
SL, SLI, MEA)

Positive # of clauses in P [CONTRA(P)
Re�nement

SLWV # of clauses in P + # of ancestors

InH-Prolog # of clauses in P [CONTRA+(P)
(SPRF-D, subset (if goal is positive)
of N-Prolog)

1 (if goal is negative)

UnH-Prolog # of clauses in P [CONTRA+(P)
(if goal is positive)

of positive ancestors
(if goal is negative)

Table 2: Key Variable to Search Branching Factor

23

References

[AL91] O.L. Astrachan and D.W. Loveland. METEORs: High performance theorem
provers for Model Elimination. In R.S. Boyer, editor, Automated Reasoning:

Essays in Honor of Woody Bledsoe. Kluwer Academic Publ., Dordrecht, 1991.

[CEFB] R. Caferra, E. Eder, B. Fronh�ofer, and W. Bibel. Extension of Prolog through
matrix reduction. Sixth European Conference on Arti�cial Intelligence, Pisa,
Italy, 1984.

[FLSY74] S. Fleisig, D. Loveland, A. Smiley, and D. Yarmash. An implementation of the
Model Elimination proof procedure. J. ACM, 21:124{139, 1974.

[Gab85] D.M. Gabbay. N-Prolog: an extension of Prolog with hypothetical implication,
Part 2. J. Logic Programming, 4:251{283, 1985.

[GR84] D.M. Gabbay and U. Reyle. N-Prolog: an extension of Prolog with hypothetical
implication, Part 1. J. Logic Programming, 4:319{355, 1984.

[Hil74] R. Hill. LUSH resolution and it completeness. Technical Report DCL Memo 78,
Department of Arti�cial Intelligence, University of Edinburgh, August 1974.

[KK71] R. Kowalski and D. Kuehner. Linear resolution with selection function. Arti�cial
Intelligence, 2:227{260, 1971.

[Kow74] R. Kowalski. Predicate calculus as a programming language. In Proc. of the

Sixth IFIP Congress, pages 569{574. North-Holland Publ., 1974.

[LBSB92] R. Letz, S. Bayerl, J. Schumann, and W. Bibel. SETHEO|a high-performance
theorem prover. Journal of Automated Reasoning, 8:183{212, 1992.

[Lov68] D.W. Loveland. Mechanical theorem proving by model elimination. J. ACM,
15:236{251, 1968.

[Lov69] D.W. Loveland. A simpli�ed format for the Model Elimination procedure. J.

ACM, 16:349{363, 1969.

[Lov78] D.W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland
Publ., Amsterdam, 1978.

[Lov87] D.W. Loveland. Near-Horn Prolog. In J. Lassez, editor, Logic Programming:

Proc. of the Fourth Int'l Conf., pages 456{469. MIT Press, 1987.

[Lov91] D.W. Loveland. Near-Horn Prolog and beyond. J. Automated Reasoning, 7:1{26,
1991.

[LR91] D.W. Loveland and D.W. Reed. A near-Horn Prolog for compilation. In J. Lassez
and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson.
MIT Press, 1991.

24

[MZ82] J. Minker and G. Zanon. An extension to linear resolution with selection function.
Information Processing Letters, 14(3):191{194, 1982.

[PCA90] L. M. Pereira, L. Caires, and J. Alferes. Classical negation for normal logic pro-
grams. In Proc. of the Seventh \Semin�ario Brasileiro de Inteligência Arti�cial",
1990.

[PCA93] L. M. Pereira, L. Caires, and J. Alferes. SLWV { a theorem prover for logic pro-
gramming. In Proc. of the Third Workshop on Extensions of Logic Programming

(ELP '92). Lecture Notes in Arti�cial Intelligence 660, pages 1{23. Springer-
Verlag, Berlin, 1993.

[Pla82] D. Plaisted. A simpli�ed problem reduction format. Arti�cial Intelligence,
18:227{261, 1982.

[Pla88] D. Plaisted. Non-Horn clause logic programming without contrapositives. J.

Automated Reasoning, 4:287{325, 1988.

[Pla90] D. Plaisted. A sequent style Model Elimination strategy and a positive re�ne-
ment. J. Automated Reasoning, 6(4):389{402, 1990.

[Ree92] D.W. Reed. A Case-analysis Approach to Disjunctive Logic Programming. PhD
thesis, Duke University, May 1992.

[RL92] D.W. Reed and D.W. Loveland. A comparison of three Prolog extensions. J.

Logic Programming, 12(1), 1992.

[RLS92] D.W. Reed, D.W. Loveland, and B.T. Smith. A near-Horn approach to dis-
junctive logic programming. In Proc. of the Second Workshop on Extensions of

Logic Programming (ELP '91). Lecture Notes in Arti�cial Intelligence 596, pages
345{369. Springer-Verlag, Berlin, 1992.

[SL73] M.E. Stickel and D.W. Loveland. A hole in goal trees: Some guidance from
resolution theory. In Proc. of the Third Int'l Joint Conf. on Arti�cial Intelligence,
pages 153{161, 1973. Also in IEEE Trans. on Computing, C-25 (April, 1976).

[SL90] J. Schumann and R. Letz. PARTHEO { a high performance parallel theorem
prover. In Proc. of the Tenth Int'l Conf. on Automated Deduction, pages 40{56,
1990.

[Sti84] M.E. Stickel. A Prolog technology theorem prover. New Generation Computing,
2(4):371{383, 1984.

[Wak88] T. Wakayama. Inde�nite query answers in deductive knowledge bases. In Proc. of
the Third IASTED Int'l Symposium on Expert Systems Theory and Applications,
1988.

[Wak89] T. Wakayama. Reasoning with Inde�nite Information in Resolution-Based Lan-

guages. PhD thesis, Syracuse University, 1989.

25

